AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
5.733 | 0.027 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.728 |
Model: | OLS | Adj. R-squared: | 0.685 |
Method: | Least Squares | F-statistic: | 16.94 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.34e-05 |
Time: | 05:00:26 | Log-Likelihood: | -98.137 |
No. Observations: | 23 | AIC: | 204.3 |
Df Residuals: | 19 | BIC: | 208.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 338.3359 | 213.806 | 1.582 | 0.130 | -109.166 785.838 |
C(dose)[T.1] | 96.0662 | 272.627 | 0.352 | 0.728 | -474.549 666.681 |
expression | -31.4341 | 23.646 | -1.329 | 0.199 | -80.927 18.058 |
expression:C(dose)[T.1] | -6.6006 | 30.759 | -0.215 | 0.832 | -70.981 57.780 |
Omnibus: | 0.918 | Durbin-Watson: | 2.239 |
Prob(Omnibus): | 0.632 | Jarque-Bera (JB): | 0.903 |
Skew: | 0.334 | Prob(JB): | 0.637 |
Kurtosis: | 2.297 | Cond. No. | 832. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.727 |
Model: | OLS | Adj. R-squared: | 0.700 |
Method: | Least Squares | F-statistic: | 26.66 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.28e-06 |
Time: | 05:00:26 | Log-Likelihood: | -98.164 |
No. Observations: | 23 | AIC: | 202.3 |
Df Residuals: | 20 | BIC: | 205.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 373.5947 | 133.501 | 2.798 | 0.011 | 95.115 652.074 |
C(dose)[T.1] | 37.6065 | 10.146 | 3.707 | 0.001 | 16.442 58.771 |
expression | -35.3349 | 14.758 | -2.394 | 0.027 | -66.119 -4.550 |
Omnibus: | 0.831 | Durbin-Watson: | 2.277 |
Prob(Omnibus): | 0.660 | Jarque-Bera (JB): | 0.832 |
Skew: | 0.291 | Prob(JB): | 0.660 |
Kurtosis: | 2.272 | Cond. No. | 310. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:00:26 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.540 |
Model: | OLS | Adj. R-squared: | 0.518 |
Method: | Least Squares | F-statistic: | 24.64 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.53e-05 |
Time: | 05:00:26 | Log-Likelihood: | -104.18 |
No. Observations: | 23 | AIC: | 212.4 |
Df Residuals: | 21 | BIC: | 214.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 704.2057 | 125.903 | 5.593 | 0.000 | 442.377 966.034 |
expression | -70.7562 | 14.254 | -4.964 | 0.000 | -100.400 -41.113 |
Omnibus: | 0.639 | Durbin-Watson: | 2.667 |
Prob(Omnibus): | 0.726 | Jarque-Bera (JB): | 0.582 |
Skew: | 0.342 | Prob(JB): | 0.748 |
Kurtosis: | 2.626 | Cond. No. | 230. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.944 | 0.046 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.616 |
Model: | OLS | Adj. R-squared: | 0.511 |
Method: | Least Squares | F-statistic: | 5.881 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0120 |
Time: | 05:00:26 | Log-Likelihood: | -68.123 |
No. Observations: | 15 | AIC: | 144.2 |
Df Residuals: | 11 | BIC: | 147.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 336.0245 | 252.131 | 1.333 | 0.210 | -218.912 890.961 |
C(dose)[T.1] | 190.1340 | 331.039 | 0.574 | 0.577 | -538.477 918.745 |
expression | -30.6175 | 28.718 | -1.066 | 0.309 | -93.825 32.590 |
expression:C(dose)[T.1] | -16.0742 | 37.706 | -0.426 | 0.678 | -99.064 66.916 |
Omnibus: | 1.837 | Durbin-Watson: | 1.379 |
Prob(Omnibus): | 0.399 | Jarque-Bera (JB): | 1.419 |
Skew: | -0.685 | Prob(JB): | 0.492 |
Kurtosis: | 2.372 | Cond. No. | 592. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.610 |
Model: | OLS | Adj. R-squared: | 0.545 |
Method: | Least Squares | F-statistic: | 9.369 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00354 |
Time: | 05:00:26 | Log-Likelihood: | -68.246 |
No. Observations: | 15 | AIC: | 142.5 |
Df Residuals: | 12 | BIC: | 144.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 417.8235 | 157.887 | 2.646 | 0.021 | 73.817 761.830 |
C(dose)[T.1] | 49.1317 | 13.246 | 3.709 | 0.003 | 20.271 77.992 |
expression | -39.9418 | 17.964 | -2.223 | 0.046 | -79.082 -0.802 |
Omnibus: | 2.216 | Durbin-Watson: | 1.571 |
Prob(Omnibus): | 0.330 | Jarque-Bera (JB): | 1.574 |
Skew: | -0.617 | Prob(JB): | 0.455 |
Kurtosis: | 2.002 | Cond. No. | 213. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:00:26 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.162 |
Model: | OLS | Adj. R-squared: | 0.098 |
Method: | Least Squares | F-statistic: | 2.513 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.137 |
Time: | 05:00:26 | Log-Likelihood: | -73.974 |
No. Observations: | 15 | AIC: | 151.9 |
Df Residuals: | 13 | BIC: | 153.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 445.3124 | 222.000 | 2.006 | 0.066 | -34.290 924.915 |
expression | -40.0883 | 25.286 | -1.585 | 0.137 | -94.716 14.539 |
Omnibus: | 1.663 | Durbin-Watson: | 2.090 |
Prob(Omnibus): | 0.435 | Jarque-Bera (JB): | 0.891 |
Skew: | 0.107 | Prob(JB): | 0.640 |
Kurtosis: | 1.825 | Cond. No. | 212. |