AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.046 0.832 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.662
Model: OLS Adj. R-squared: 0.608
Method: Least Squares F-statistic: 12.38
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000102
Time: 03:39:52 Log-Likelihood: -100.64
No. Observations: 23 AIC: 209.3
Df Residuals: 19 BIC: 213.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 34.4580 29.002 1.188 0.249 -26.244 95.160
C(dose)[T.1] 89.9843 46.751 1.925 0.069 -7.867 187.835
expression 4.4053 6.324 0.697 0.494 -8.830 17.641
expression:C(dose)[T.1] -7.7617 9.562 -0.812 0.427 -27.776 12.252
Omnibus: 0.608 Durbin-Watson: 1.577
Prob(Omnibus): 0.738 Jarque-Bera (JB): 0.630
Skew: 0.060 Prob(JB): 0.730
Kurtosis: 2.198 Cond. No. 67.5

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 18.56
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.77e-05
Time: 03:39:52 Log-Likelihood: -101.04
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 49.6767 21.937 2.265 0.035 3.917 95.437
C(dose)[T.1] 52.7803 9.135 5.778 0.000 33.726 71.835
expression 1.0108 4.703 0.215 0.832 -8.799 10.821
Omnibus: 0.333 Durbin-Watson: 1.877
Prob(Omnibus): 0.847 Jarque-Bera (JB): 0.491
Skew: 0.049 Prob(JB): 0.782
Kurtosis: 2.291 Cond. No. 25.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:39:52 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.065
Model: OLS Adj. R-squared: 0.021
Method: Least Squares F-statistic: 1.470
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.239
Time: 03:39:52 Log-Likelihood: -112.33
No. Observations: 23 AIC: 228.7
Df Residuals: 21 BIC: 230.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 38.3415 34.837 1.101 0.284 -34.105 110.788
expression 8.7166 7.190 1.212 0.239 -6.236 23.670
Omnibus: 2.733 Durbin-Watson: 2.444
Prob(Omnibus): 0.255 Jarque-Bera (JB): 1.584
Skew: 0.369 Prob(JB): 0.453
Kurtosis: 1.947 Cond. No. 25.2

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.969 0.186 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.532
Model: OLS Adj. R-squared: 0.404
Method: Least Squares F-statistic: 4.167
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0337
Time: 03:39:52 Log-Likelihood: -69.606
No. Observations: 15 AIC: 147.2
Df Residuals: 11 BIC: 150.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 190.0456 168.755 1.126 0.284 -181.383 561.474
C(dose)[T.1] 130.8771 240.594 0.544 0.597 -398.666 660.420
expression -31.8880 43.792 -0.728 0.482 -128.275 64.499
expression:C(dose)[T.1] -22.6792 63.309 -0.358 0.727 -162.022 116.663
Omnibus: 1.094 Durbin-Watson: 0.788
Prob(Omnibus): 0.579 Jarque-Bera (JB): 0.842
Skew: -0.292 Prob(JB): 0.656
Kurtosis: 1.997 Cond. No. 170.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.526
Model: OLS Adj. R-squared: 0.448
Method: Least Squares F-statistic: 6.671
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0113
Time: 03:39:52 Log-Likelihood: -69.693
No. Observations: 15 AIC: 145.4
Df Residuals: 12 BIC: 147.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 231.7726 117.590 1.971 0.072 -24.435 487.980
C(dose)[T.1] 44.8679 14.911 3.009 0.011 12.381 77.355
expression -42.7396 30.455 -1.403 0.186 -109.095 23.616
Omnibus: 1.482 Durbin-Watson: 0.737
Prob(Omnibus): 0.477 Jarque-Bera (JB): 0.969
Skew: -0.306 Prob(JB): 0.616
Kurtosis: 1.915 Cond. No. 66.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:39:52 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.169
Model: OLS Adj. R-squared: 0.105
Method: Least Squares F-statistic: 2.647
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.128
Time: 03:39:52 Log-Likelihood: -73.910
No. Observations: 15 AIC: 151.8
Df Residuals: 13 BIC: 153.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 327.5738 144.061 2.274 0.041 16.349 638.798
expression -61.6970 37.920 -1.627 0.128 -143.618 20.224
Omnibus: 1.090 Durbin-Watson: 1.381
Prob(Omnibus): 0.580 Jarque-Bera (JB): 0.841
Skew: 0.292 Prob(JB): 0.657
Kurtosis: 1.998 Cond. No. 63.2