AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.069 0.796 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.680
Model: OLS Adj. R-squared: 0.630
Method: Least Squares F-statistic: 13.49
Date: Tue, 28 Jan 2025 Prob (F-statistic): 5.98e-05
Time: 18:29:46 Log-Likelihood: -99.985
No. Observations: 23 AIC: 208.0
Df Residuals: 19 BIC: 212.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 122.1998 57.711 2.117 0.048 1.410 242.990
C(dose)[T.1] -47.0004 74.977 -0.627 0.538 -203.930 109.929
expression -16.1041 13.597 -1.184 0.251 -44.562 12.354
expression:C(dose)[T.1] 24.2132 18.068 1.340 0.196 -13.603 62.029
Omnibus: 1.204 Durbin-Watson: 2.042
Prob(Omnibus): 0.548 Jarque-Bera (JB): 0.845
Skew: -0.021 Prob(JB): 0.655
Kurtosis: 2.062 Cond. No. 102.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 18.59
Date: Tue, 28 Jan 2025 Prob (F-statistic): 2.74e-05
Time: 18:29:46 Log-Likelihood: -101.02
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 64.3071 39.021 1.648 0.115 -17.090 145.704
C(dose)[T.1] 52.7796 9.010 5.858 0.000 33.985 71.574
expression -2.3919 9.130 -0.262 0.796 -21.438 16.654
Omnibus: 0.225 Durbin-Watson: 1.974
Prob(Omnibus): 0.894 Jarque-Bera (JB): 0.423
Skew: 0.037 Prob(JB): 0.809
Kurtosis: 2.340 Cond. No. 39.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 28 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 18:29:46 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.050
Model: OLS Adj. R-squared: 0.005
Method: Least Squares F-statistic: 1.109
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.304
Time: 18:29:46 Log-Likelihood: -112.51
No. Observations: 23 AIC: 229.0
Df Residuals: 21 BIC: 231.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 141.4829 59.071 2.395 0.026 18.637 264.328
expression -15.0263 14.269 -1.053 0.304 -44.699 14.647
Omnibus: 1.691 Durbin-Watson: 2.670
Prob(Omnibus): 0.429 Jarque-Bera (JB): 1.453
Skew: 0.490 Prob(JB): 0.484
Kurtosis: 2.254 Cond. No. 36.8

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.418 0.146 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.589
Model: OLS Adj. R-squared: 0.477
Method: Least Squares F-statistic: 5.258
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0171
Time: 18:29:46 Log-Likelihood: -68.628
No. Observations: 15 AIC: 145.3
Df Residuals: 11 BIC: 148.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 29.6411 67.690 0.438 0.670 -119.343 178.625
C(dose)[T.1] -77.8152 112.119 -0.694 0.502 -324.588 168.957
expression 6.1874 10.953 0.565 0.583 -17.920 30.295
expression:C(dose)[T.1] 20.4837 18.076 1.133 0.281 -19.302 60.269
Omnibus: 0.518 Durbin-Watson: 0.930
Prob(Omnibus): 0.772 Jarque-Bera (JB): 0.563
Skew: -0.142 Prob(JB): 0.755
Kurtosis: 2.094 Cond. No. 126.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.541
Model: OLS Adj. R-squared: 0.465
Method: Least Squares F-statistic: 7.078
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00933
Time: 18:29:46 Log-Likelihood: -69.456
No. Observations: 15 AIC: 144.9
Df Residuals: 12 BIC: 147.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -16.2891 54.851 -0.297 0.772 -135.800 103.222
C(dose)[T.1] 48.2123 14.373 3.354 0.006 16.896 79.529
expression 13.7082 8.816 1.555 0.146 -5.500 32.916
Omnibus: 3.467 Durbin-Watson: 0.626
Prob(Omnibus): 0.177 Jarque-Bera (JB): 1.370
Skew: -0.307 Prob(JB): 0.504
Kurtosis: 1.652 Cond. No. 48.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00629
Time: 18:29:46 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.111
Model: OLS Adj. R-squared: 0.043
Method: Least Squares F-statistic: 1.624
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.225
Time: 18:29:46 Log-Likelihood: -74.417
No. Observations: 15 AIC: 152.8
Df Residuals: 13 BIC: 154.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 1.4225 73.016 0.019 0.985 -156.319 159.164
expression 15.0102 11.779 1.274 0.225 -10.436 40.456
Omnibus: 0.280 Durbin-Watson: 1.658
Prob(Omnibus): 0.869 Jarque-Bera (JB): 0.443
Skew: 0.096 Prob(JB): 0.801
Kurtosis: 2.180 Cond. No. 48.5