AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.247 0.625 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.683
Model: OLS Adj. R-squared: 0.633
Method: Least Squares F-statistic: 13.67
Date: Thu, 03 Apr 2025 Prob (F-statistic): 5.49e-05
Time: 22:45:53 Log-Likelihood: -99.880
No. Observations: 23 AIC: 207.8
Df Residuals: 19 BIC: 212.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 221.5830 173.715 1.276 0.217 -142.006 585.172
C(dose)[T.1] -592.3749 482.514 -1.228 0.235 -1602.288 417.538
expression -17.3710 18.019 -0.964 0.347 -55.084 20.342
expression:C(dose)[T.1] 65.8642 49.061 1.343 0.195 -36.821 168.550
Omnibus: 0.056 Durbin-Watson: 2.102
Prob(Omnibus): 0.972 Jarque-Bera (JB): 0.271
Skew: -0.048 Prob(JB): 0.873
Kurtosis: 2.477 Cond. No. 1.28e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.619
Method: Least Squares F-statistic: 18.85
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.51e-05
Time: 22:45:53 Log-Likelihood: -100.92
No. Observations: 23 AIC: 207.8
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 135.9809 164.798 0.825 0.419 -207.782 479.744
C(dose)[T.1] 55.2782 9.553 5.787 0.000 35.351 75.205
expression -8.4868 17.092 -0.497 0.625 -44.140 27.167
Omnibus: 0.565 Durbin-Watson: 2.011
Prob(Omnibus): 0.754 Jarque-Bera (JB): 0.616
Skew: 0.091 Prob(JB): 0.735
Kurtosis: 2.219 Cond. No. 373.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:45:53 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.073
Model: OLS Adj. R-squared: 0.029
Method: Least Squares F-statistic: 1.652
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.213
Time: 22:45:54 Log-Likelihood: -112.23
No. Observations: 23 AIC: 228.5
Df Residuals: 21 BIC: 230.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -231.9935 242.633 -0.956 0.350 -736.576 272.589
expression 31.9878 24.889 1.285 0.213 -19.771 83.747
Omnibus: 0.591 Durbin-Watson: 2.321
Prob(Omnibus): 0.744 Jarque-Bera (JB): 0.626
Skew: -0.080 Prob(JB): 0.731
Kurtosis: 2.208 Cond. No. 344.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.391 0.544 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.529
Model: OLS Adj. R-squared: 0.401
Method: Least Squares F-statistic: 4.119
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0348
Time: 22:45:54 Log-Likelihood: -69.653
No. Observations: 15 AIC: 147.3
Df Residuals: 11 BIC: 150.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 544.4911 348.904 1.561 0.147 -223.441 1312.423
C(dose)[T.1] -439.5430 404.004 -1.088 0.300 -1328.749 449.663
expression -59.0749 43.183 -1.368 0.199 -154.120 35.970
expression:C(dose)[T.1] 60.5135 49.928 1.212 0.251 -49.377 170.405
Omnibus: 2.877 Durbin-Watson: 0.888
Prob(Omnibus): 0.237 Jarque-Bera (JB): 1.640
Skew: -0.810 Prob(JB): 0.440
Kurtosis: 2.948 Cond. No. 651.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.466
Model: OLS Adj. R-squared: 0.377
Method: Least Squares F-statistic: 5.239
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0231
Time: 22:45:54 Log-Likelihood: -70.593
No. Observations: 15 AIC: 147.2
Df Residuals: 12 BIC: 149.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 178.9281 178.784 1.001 0.337 -210.609 568.465
C(dose)[T.1] 49.7672 15.517 3.207 0.008 15.960 83.575
expression -13.8071 22.095 -0.625 0.544 -61.947 34.333
Omnibus: 2.565 Durbin-Watson: 0.778
Prob(Omnibus): 0.277 Jarque-Bera (JB): 1.881
Skew: -0.826 Prob(JB): 0.390
Kurtosis: 2.468 Cond. No. 191.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:45:54 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.008
Model: OLS Adj. R-squared: -0.068
Method: Least Squares F-statistic: 0.1113
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.744
Time: 22:45:54 Log-Likelihood: -75.236
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 171.6936 234.072 0.734 0.476 -333.989 677.376
expression -9.6358 28.879 -0.334 0.744 -72.026 52.754
Omnibus: 1.078 Durbin-Watson: 1.685
Prob(Omnibus): 0.583 Jarque-Bera (JB): 0.753
Skew: 0.134 Prob(JB): 0.686
Kurtosis: 1.936 Cond. No. 190.