AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.505 0.486 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.668
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 12.72
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.64e-05
Time: 04:48:12 Log-Likelihood: -100.44
No. Observations: 23 AIC: 208.9
Df Residuals: 19 BIC: 213.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 42.7495 140.750 0.304 0.765 -251.843 337.342
C(dose)[T.1] -108.3173 220.024 -0.492 0.628 -568.832 352.198
expression 1.5286 18.759 0.081 0.936 -37.734 40.792
expression:C(dose)[T.1] 22.5454 30.070 0.750 0.463 -40.392 85.483
Omnibus: 0.130 Durbin-Watson: 1.949
Prob(Omnibus): 0.937 Jarque-Bera (JB): 0.343
Skew: -0.087 Prob(JB): 0.842
Kurtosis: 2.428 Cond. No. 465.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 19.21
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.21e-05
Time: 04:48:12 Log-Likelihood: -100.78
No. Observations: 23 AIC: 207.6
Df Residuals: 20 BIC: 211.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -23.0219 108.857 -0.211 0.835 -250.093 204.050
C(dose)[T.1] 56.4820 9.727 5.807 0.000 36.193 76.771
expression 10.3027 14.500 0.711 0.486 -19.943 40.549
Omnibus: 0.346 Durbin-Watson: 1.874
Prob(Omnibus): 0.841 Jarque-Bera (JB): 0.498
Skew: 0.034 Prob(JB): 0.780
Kurtosis: 2.283 Cond. No. 189.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:48:12 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.081
Model: OLS Adj. R-squared: 0.037
Method: Least Squares F-statistic: 1.840
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.189
Time: 04:48:12 Log-Likelihood: -112.14
No. Observations: 23 AIC: 228.3
Df Residuals: 21 BIC: 230.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 285.6083 151.946 1.880 0.074 -30.380 601.597
expression -28.0119 20.651 -1.356 0.189 -70.958 14.934
Omnibus: 0.603 Durbin-Watson: 2.500
Prob(Omnibus): 0.740 Jarque-Bera (JB): 0.670
Skew: 0.310 Prob(JB): 0.715
Kurtosis: 2.438 Cond. No. 165.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.059 0.812 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.468
Model: OLS Adj. R-squared: 0.323
Method: Least Squares F-statistic: 3.226
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0649
Time: 04:48:12 Log-Likelihood: -70.566
No. Observations: 15 AIC: 149.1
Df Residuals: 11 BIC: 152.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 97.4930 192.372 0.507 0.622 -325.916 520.902
C(dose)[T.1] -137.5154 320.519 -0.429 0.676 -842.973 567.942
expression -3.7041 23.657 -0.157 0.878 -55.772 48.364
expression:C(dose)[T.1] 23.3706 39.921 0.585 0.570 -64.495 111.236
Omnibus: 4.678 Durbin-Watson: 0.961
Prob(Omnibus): 0.096 Jarque-Bera (JB): 2.607
Skew: -1.011 Prob(JB): 0.272
Kurtosis: 3.287 Cond. No. 405.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.451
Model: OLS Adj. R-squared: 0.360
Method: Least Squares F-statistic: 4.938
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0272
Time: 04:48:12 Log-Likelihood: -70.796
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 30.8812 150.806 0.205 0.841 -297.697 359.459
C(dose)[T.1] 49.8777 15.949 3.127 0.009 15.127 84.628
expression 4.5029 18.526 0.243 0.812 -35.863 44.868
Omnibus: 3.025 Durbin-Watson: 0.800
Prob(Omnibus): 0.220 Jarque-Bera (JB): 1.992
Skew: -0.882 Prob(JB): 0.369
Kurtosis: 2.726 Cond. No. 158.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:48:12 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.004
Model: OLS Adj. R-squared: -0.072
Method: Least Squares F-statistic: 0.05789
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.814
Time: 04:48:13 Log-Likelihood: -75.267
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 139.3068 189.969 0.733 0.476 -271.096 549.709
expression -5.6796 23.607 -0.241 0.814 -56.679 45.319
Omnibus: 0.646 Durbin-Watson: 1.610
Prob(Omnibus): 0.724 Jarque-Bera (JB): 0.602
Skew: 0.086 Prob(JB): 0.740
Kurtosis: 2.034 Cond. No. 153.