AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.745 0.201 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.685
Model: OLS Adj. R-squared: 0.635
Method: Least Squares F-statistic: 13.78
Date: Thu, 03 Apr 2025 Prob (F-statistic): 5.22e-05
Time: 22:55:11 Log-Likelihood: -99.818
No. Observations: 23 AIC: 207.6
Df Residuals: 19 BIC: 212.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -17.6044 51.098 -0.345 0.734 -124.554 89.345
C(dose)[T.1] 101.6268 76.754 1.324 0.201 -59.020 262.274
expression 11.9721 8.462 1.415 0.173 -5.739 29.683
expression:C(dose)[T.1] -8.3650 12.159 -0.688 0.500 -33.814 17.084
Omnibus: 0.127 Durbin-Watson: 1.653
Prob(Omnibus): 0.939 Jarque-Bera (JB): 0.334
Skew: 0.101 Prob(JB): 0.846
Kurtosis: 2.445 Cond. No. 150.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.677
Model: OLS Adj. R-squared: 0.645
Method: Least Squares F-statistic: 20.98
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.23e-05
Time: 22:55:11 Log-Likelihood: -100.10
No. Observations: 23 AIC: 206.2
Df Residuals: 20 BIC: 209.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 6.6970 36.433 0.184 0.856 -69.301 82.695
C(dose)[T.1] 49.1949 8.976 5.481 0.000 30.471 67.919
expression 7.9207 5.996 1.321 0.201 -4.587 20.428
Omnibus: 0.229 Durbin-Watson: 1.670
Prob(Omnibus): 0.892 Jarque-Bera (JB): 0.364
Skew: 0.196 Prob(JB): 0.834
Kurtosis: 2.525 Cond. No. 56.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:55:11 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.192
Model: OLS Adj. R-squared: 0.154
Method: Least Squares F-statistic: 5.004
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0363
Time: 22:55:11 Log-Likelihood: -110.65
No. Observations: 23 AIC: 225.3
Df Residuals: 21 BIC: 227.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -41.5050 54.575 -0.761 0.455 -155.001 71.991
expression 19.4004 8.672 2.237 0.036 1.365 37.435
Omnibus: 1.926 Durbin-Watson: 2.232
Prob(Omnibus): 0.382 Jarque-Bera (JB): 1.673
Skew: 0.579 Prob(JB): 0.433
Kurtosis: 2.363 Cond. No. 54.3

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.039 0.847 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.531
Model: OLS Adj. R-squared: 0.404
Method: Least Squares F-statistic: 4.158
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0339
Time: 22:55:11 Log-Likelihood: -69.615
No. Observations: 15 AIC: 147.2
Df Residuals: 11 BIC: 150.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 117.8176 56.235 2.095 0.060 -5.954 241.589
C(dose)[T.1] -87.5705 100.143 -0.874 0.401 -307.983 132.842
expression -7.4293 8.129 -0.914 0.380 -25.321 10.462
expression:C(dose)[T.1] 20.7818 15.086 1.378 0.196 -12.423 53.986
Omnibus: 0.626 Durbin-Watson: 1.198
Prob(Omnibus): 0.731 Jarque-Bera (JB): 0.153
Skew: -0.245 Prob(JB): 0.927
Kurtosis: 2.933 Cond. No. 110.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.451
Model: OLS Adj. R-squared: 0.359
Method: Least Squares F-statistic: 4.920
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0275
Time: 22:55:11 Log-Likelihood: -70.809
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 76.8931 49.500 1.553 0.146 -30.959 184.745
C(dose)[T.1] 48.7590 15.871 3.072 0.010 14.179 83.339
expression -1.3954 7.099 -0.197 0.847 -16.864 14.073
Omnibus: 3.112 Durbin-Watson: 0.773
Prob(Omnibus): 0.211 Jarque-Bera (JB): 2.092
Skew: -0.902 Prob(JB): 0.351
Kurtosis: 2.693 Cond. No. 43.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:55:12 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.018
Model: OLS Adj. R-squared: -0.057
Method: Least Squares F-statistic: 0.2434
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.630
Time: 22:55:12 Log-Likelihood: -75.161
No. Observations: 15 AIC: 154.3
Df Residuals: 13 BIC: 155.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 123.1286 60.558 2.033 0.063 -7.699 253.956
expression -4.4536 9.027 -0.493 0.630 -23.955 15.048
Omnibus: 1.119 Durbin-Watson: 1.673
Prob(Omnibus): 0.571 Jarque-Bera (JB): 0.755
Skew: 0.105 Prob(JB): 0.685
Kurtosis: 1.921 Cond. No. 41.2