AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.609 0.044 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.715
Model: OLS Adj. R-squared: 0.670
Method: Least Squares F-statistic: 15.87
Date: Tue, 03 Dec 2024 Prob (F-statistic): 2.07e-05
Time: 11:45:43 Log-Likelihood: -98.677
No. Observations: 23 AIC: 205.4
Df Residuals: 19 BIC: 209.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 204.4872 99.478 2.056 0.054 -3.723 412.698
C(dose)[T.1] 37.4740 136.282 0.275 0.786 -247.767 322.714
expression -19.1494 12.656 -1.513 0.147 -45.639 7.340
expression:C(dose)[T.1] 0.6122 18.015 0.034 0.973 -37.094 38.318
Omnibus: 0.743 Durbin-Watson: 1.702
Prob(Omnibus): 0.690 Jarque-Bera (JB): 0.780
Skew: 0.340 Prob(JB): 0.677
Kurtosis: 2.407 Cond. No. 336.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.715
Model: OLS Adj. R-squared: 0.686
Method: Least Squares F-statistic: 25.06
Date: Tue, 03 Dec 2024 Prob (F-statistic): 3.56e-06
Time: 11:45:43 Log-Likelihood: -98.678
No. Observations: 23 AIC: 203.4
Df Residuals: 20 BIC: 206.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 202.1163 69.112 2.924 0.008 57.952 346.281
C(dose)[T.1] 42.0930 9.484 4.439 0.000 22.311 61.875
expression -18.8473 8.779 -2.147 0.044 -37.160 -0.535
Omnibus: 0.749 Durbin-Watson: 1.708
Prob(Omnibus): 0.688 Jarque-Bera (JB): 0.784
Skew: 0.342 Prob(JB): 0.676
Kurtosis: 2.410 Cond. No. 136.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 03 Dec 2024 Prob (F-statistic): 3.51e-06
Time: 11:45:43 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.434
Model: OLS Adj. R-squared: 0.407
Method: Least Squares F-statistic: 16.09
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.000632
Time: 11:45:43 Log-Likelihood: -106.56
No. Observations: 23 AIC: 217.1
Df Residuals: 21 BIC: 219.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 384.9889 76.293 5.046 0.000 226.328 543.649
expression -40.3672 10.063 -4.011 0.001 -61.294 -19.440
Omnibus: 1.723 Durbin-Watson: 1.901
Prob(Omnibus): 0.423 Jarque-Bera (JB): 1.348
Skew: 0.406 Prob(JB): 0.510
Kurtosis: 2.136 Cond. No. 108.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.715 0.215 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.576
Model: OLS Adj. R-squared: 0.460
Method: Least Squares F-statistic: 4.974
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0202
Time: 11:45:43 Log-Likelihood: -68.871
No. Observations: 15 AIC: 145.7
Df Residuals: 11 BIC: 148.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 116.7389 131.840 0.885 0.395 -173.439 406.917
C(dose)[T.1] 316.3922 222.049 1.425 0.182 -172.334 805.118
expression -6.4574 17.210 -0.375 0.715 -44.336 31.421
expression:C(dose)[T.1] -36.2753 29.603 -1.225 0.246 -101.431 28.880
Omnibus: 0.845 Durbin-Watson: 0.857
Prob(Omnibus): 0.656 Jarque-Bera (JB): 0.735
Skew: -0.260 Prob(JB): 0.692
Kurtosis: 2.049 Cond. No. 293.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.518
Model: OLS Adj. R-squared: 0.437
Method: Least Squares F-statistic: 6.440
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0126
Time: 11:45:44 Log-Likelihood: -69.831
No. Observations: 15 AIC: 145.7
Df Residuals: 12 BIC: 147.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 210.3593 109.669 1.918 0.079 -28.589 449.308
C(dose)[T.1] 44.8987 15.084 2.977 0.012 12.034 77.764
expression -18.7174 14.292 -1.310 0.215 -49.858 12.423
Omnibus: 1.999 Durbin-Watson: 1.272
Prob(Omnibus): 0.368 Jarque-Bera (JB): 1.521
Skew: -0.639 Prob(JB): 0.467
Kurtosis: 2.105 Cond. No. 115.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00629
Time: 11:45:44 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.162
Model: OLS Adj. R-squared: 0.097
Method: Least Squares F-statistic: 2.506
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.137
Time: 11:45:44 Log-Likelihood: -73.978
No. Observations: 15 AIC: 152.0
Df Residuals: 13 BIC: 153.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 303.8506 133.102 2.283 0.040 16.300 591.401
expression -27.9730 17.671 -1.583 0.137 -66.149 10.203
Omnibus: 0.038 Durbin-Watson: 1.988
Prob(Omnibus): 0.981 Jarque-Bera (JB): 0.196
Skew: -0.096 Prob(JB): 0.907
Kurtosis: 2.474 Cond. No. 110.