AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.243 0.087 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.710
Model: OLS Adj. R-squared: 0.665
Method: Least Squares F-statistic: 15.54
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.39e-05
Time: 04:24:24 Log-Likelihood: -98.853
No. Observations: 23 AIC: 205.7
Df Residuals: 19 BIC: 210.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 79.8969 67.206 1.189 0.249 -60.767 220.561
C(dose)[T.1] 136.5106 87.222 1.565 0.134 -46.048 319.069
expression -5.4684 14.256 -0.384 0.706 -35.306 24.369
expression:C(dose)[T.1] -16.2446 18.022 -0.901 0.379 -53.966 21.477
Omnibus: 0.360 Durbin-Watson: 1.759
Prob(Omnibus): 0.835 Jarque-Bera (JB): 0.005
Skew: 0.036 Prob(JB): 0.997
Kurtosis: 3.018 Cond. No. 149.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.698
Model: OLS Adj. R-squared: 0.668
Method: Least Squares F-statistic: 23.11
Date: Thu, 21 Nov 2024 Prob (F-statistic): 6.31e-06
Time: 04:24:24 Log-Likelihood: -99.335
No. Observations: 23 AIC: 204.7
Df Residuals: 20 BIC: 208.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 127.6434 41.166 3.101 0.006 41.773 213.514
C(dose)[T.1] 58.2775 8.585 6.788 0.000 40.369 76.186
expression -15.6323 8.681 -1.801 0.087 -33.740 2.476
Omnibus: 0.477 Durbin-Watson: 1.653
Prob(Omnibus): 0.788 Jarque-Bera (JB): 0.011
Skew: 0.023 Prob(JB): 0.995
Kurtosis: 3.096 Cond. No. 51.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:24:24 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.002
Model: OLS Adj. R-squared: -0.045
Method: Least Squares F-statistic: 0.04804
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.829
Time: 04:24:24 Log-Likelihood: -113.08
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 64.2103 71.116 0.903 0.377 -83.684 212.105
expression 3.1981 14.591 0.219 0.829 -27.146 33.542
Omnibus: 2.823 Durbin-Watson: 2.508
Prob(Omnibus): 0.244 Jarque-Bera (JB): 1.530
Skew: 0.327 Prob(JB): 0.465
Kurtosis: 1.919 Cond. No. 50.1

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.264 0.617 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.464
Model: OLS Adj. R-squared: 0.318
Method: Least Squares F-statistic: 3.173
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0675
Time: 04:24:24 Log-Likelihood: -70.624
No. Observations: 15 AIC: 149.2
Df Residuals: 11 BIC: 152.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 88.3255 75.882 1.164 0.269 -78.689 255.340
C(dose)[T.1] 81.8964 134.853 0.607 0.556 -214.912 378.705
expression -3.7466 13.438 -0.279 0.786 -33.324 25.831
expression:C(dose)[T.1] -6.5776 25.242 -0.261 0.799 -62.135 48.980
Omnibus: 3.867 Durbin-Watson: 0.873
Prob(Omnibus): 0.145 Jarque-Bera (JB): 2.328
Skew: -0.965 Prob(JB): 0.312
Kurtosis: 2.991 Cond. No. 113.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.461
Model: OLS Adj. R-squared: 0.371
Method: Least Squares F-statistic: 5.124
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0246
Time: 04:24:24 Log-Likelihood: -70.670
No. Observations: 15 AIC: 147.3
Df Residuals: 12 BIC: 149.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 98.7237 61.986 1.593 0.137 -36.331 233.778
C(dose)[T.1] 47.0296 16.131 2.915 0.013 11.883 82.176
expression -5.6109 10.925 -0.514 0.617 -29.414 18.192
Omnibus: 3.379 Durbin-Watson: 0.799
Prob(Omnibus): 0.185 Jarque-Bera (JB): 2.160
Skew: -0.925 Prob(JB): 0.340
Kurtosis: 2.816 Cond. No. 45.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:24:24 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.079
Model: OLS Adj. R-squared: 0.008
Method: Least Squares F-statistic: 1.109
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.312
Time: 04:24:24 Log-Likelihood: -74.686
No. Observations: 15 AIC: 153.4
Df Residuals: 13 BIC: 154.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 168.5537 71.793 2.348 0.035 13.454 323.653
expression -13.9414 13.241 -1.053 0.312 -42.548 14.665
Omnibus: 0.500 Durbin-Watson: 1.864
Prob(Omnibus): 0.779 Jarque-Bera (JB): 0.549
Skew: -0.107 Prob(JB): 0.760
Kurtosis: 2.088 Cond. No. 41.2