AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.776 0.389 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.663
Model: OLS Adj. R-squared: 0.610
Method: Least Squares F-statistic: 12.47
Date: Thu, 03 Apr 2025 Prob (F-statistic): 9.76e-05
Time: 22:49:21 Log-Likelihood: -100.59
No. Observations: 23 AIC: 209.2
Df Residuals: 19 BIC: 213.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 104.6474 97.639 1.072 0.297 -99.713 309.008
C(dose)[T.1] 93.0639 158.030 0.589 0.563 -237.696 423.824
expression -11.1287 21.501 -0.518 0.611 -56.130 33.873
expression:C(dose)[T.1] -8.0694 34.065 -0.237 0.815 -79.368 63.229
Omnibus: 0.619 Durbin-Watson: 1.692
Prob(Omnibus): 0.734 Jarque-Bera (JB): 0.642
Skew: 0.096 Prob(JB): 0.725
Kurtosis: 2.204 Cond. No. 215.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.662
Model: OLS Adj. R-squared: 0.628
Method: Least Squares F-statistic: 19.60
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.94e-05
Time: 22:49:21 Log-Likelihood: -100.62
No. Observations: 23 AIC: 207.2
Df Residuals: 20 BIC: 210.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 119.2173 74.020 1.611 0.123 -35.185 273.620
C(dose)[T.1] 55.6931 9.010 6.181 0.000 36.898 74.488
expression -14.3433 16.279 -0.881 0.389 -48.300 19.613
Omnibus: 0.549 Durbin-Watson: 1.719
Prob(Omnibus): 0.760 Jarque-Bera (JB): 0.611
Skew: 0.104 Prob(JB): 0.737
Kurtosis: 2.229 Cond. No. 83.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:49:21 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.017
Model: OLS Adj. R-squared: -0.030
Method: Least Squares F-statistic: 0.3594
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.555
Time: 22:49:21 Log-Likelihood: -112.91
No. Observations: 23 AIC: 229.8
Df Residuals: 21 BIC: 232.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 8.1766 119.546 0.068 0.946 -240.434 256.787
expression 15.5156 25.880 0.600 0.555 -38.306 69.337
Omnibus: 1.341 Durbin-Watson: 2.565
Prob(Omnibus): 0.511 Jarque-Bera (JB): 1.033
Skew: 0.268 Prob(JB): 0.597
Kurtosis: 2.111 Cond. No. 80.8

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.434 0.523 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.490
Model: OLS Adj. R-squared: 0.350
Method: Least Squares F-statistic: 3.517
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0526
Time: 22:49:21 Log-Likelihood: -70.256
No. Observations: 15 AIC: 148.5
Df Residuals: 11 BIC: 151.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -38.3027 113.346 -0.338 0.742 -287.776 211.171
C(dose)[T.1] 154.4471 152.139 1.015 0.332 -180.408 489.303
expression 20.3130 21.663 0.938 0.369 -27.366 67.992
expression:C(dose)[T.1] -20.2165 29.655 -0.682 0.510 -85.486 45.053
Omnibus: 2.271 Durbin-Watson: 0.575
Prob(Omnibus): 0.321 Jarque-Bera (JB): 1.577
Skew: -0.767 Prob(JB): 0.455
Kurtosis: 2.588 Cond. No. 138.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.468
Model: OLS Adj. R-squared: 0.379
Method: Least Squares F-statistic: 5.278
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0227
Time: 22:49:21 Log-Likelihood: -70.567
No. Observations: 15 AIC: 147.1
Df Residuals: 12 BIC: 149.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 17.8493 76.109 0.235 0.819 -147.978 183.677
C(dose)[T.1] 51.3164 15.794 3.249 0.007 16.904 85.728
expression 9.5251 14.460 0.659 0.523 -21.981 41.031
Omnibus: 1.782 Durbin-Watson: 0.685
Prob(Omnibus): 0.410 Jarque-Bera (JB): 1.322
Skew: -0.678 Prob(JB): 0.516
Kurtosis: 2.477 Cond. No. 52.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:49:22 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.077
Method: Least Squares F-statistic: 6.794e-06
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.998
Time: 22:49:22 Log-Likelihood: -75.300
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 93.9139 95.394 0.984 0.343 -112.172 300.000
expression -0.0486 18.648 -0.003 0.998 -40.335 40.238
Omnibus: 0.579 Durbin-Watson: 1.622
Prob(Omnibus): 0.749 Jarque-Bera (JB): 0.572
Skew: 0.044 Prob(JB): 0.751
Kurtosis: 2.048 Cond. No. 49.8