AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.508 0.129 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.703
Model: OLS Adj. R-squared: 0.656
Method: Least Squares F-statistic: 14.97
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.05e-05
Time: 03:31:20 Log-Likelihood: -99.154
No. Observations: 23 AIC: 206.3
Df Residuals: 19 BIC: 210.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 70.1189 100.213 0.700 0.493 -139.630 279.868
C(dose)[T.1] -49.6251 110.924 -0.447 0.660 -281.792 182.542
expression -2.7338 17.191 -0.159 0.875 -38.714 33.247
expression:C(dose)[T.1] 18.5289 19.204 0.965 0.347 -21.666 58.723
Omnibus: 0.473 Durbin-Watson: 1.664
Prob(Omnibus): 0.789 Jarque-Bera (JB): 0.576
Skew: 0.116 Prob(JB): 0.750
Kurtosis: 2.260 Cond. No. 232.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.688
Model: OLS Adj. R-squared: 0.657
Method: Least Squares F-statistic: 22.07
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.70e-06
Time: 03:31:20 Log-Likelihood: -99.704
No. Observations: 23 AIC: 205.4
Df Residuals: 20 BIC: 208.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -16.2932 44.885 -0.363 0.720 -109.922 77.336
C(dose)[T.1] 57.0766 8.598 6.639 0.000 39.143 75.011
expression 12.1137 7.649 1.584 0.129 -3.843 28.070
Omnibus: 1.035 Durbin-Watson: 1.908
Prob(Omnibus): 0.596 Jarque-Bera (JB): 0.855
Skew: 0.190 Prob(JB): 0.652
Kurtosis: 2.136 Cond. No. 64.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:31:20 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.02038
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.888
Time: 03:31:20 Log-Likelihood: -113.09
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 90.1222 73.233 1.231 0.232 -62.173 242.418
expression -1.8343 12.848 -0.143 0.888 -28.552 24.884
Omnibus: 3.171 Durbin-Watson: 2.483
Prob(Omnibus): 0.205 Jarque-Bera (JB): 1.580
Skew: 0.312 Prob(JB): 0.454
Kurtosis: 1.878 Cond. No. 59.6

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.735 0.408 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.507
Model: OLS Adj. R-squared: 0.373
Method: Least Squares F-statistic: 3.778
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0438
Time: 03:31:20 Log-Likelihood: -69.989
No. Observations: 15 AIC: 148.0
Df Residuals: 11 BIC: 150.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -144.9710 186.548 -0.777 0.453 -555.560 265.618
C(dose)[T.1] 244.2672 259.083 0.943 0.366 -325.970 814.505
expression 32.1072 28.147 1.141 0.278 -29.844 94.059
expression:C(dose)[T.1] -29.6095 38.229 -0.775 0.455 -113.751 54.532
Omnibus: 2.035 Durbin-Watson: 0.835
Prob(Omnibus): 0.362 Jarque-Bera (JB): 1.420
Skew: -0.723 Prob(JB): 0.492
Kurtosis: 2.578 Cond. No. 314.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.481
Model: OLS Adj. R-squared: 0.394
Method: Least Squares F-statistic: 5.552
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0196
Time: 03:31:20 Log-Likelihood: -70.387
No. Observations: 15 AIC: 146.8
Df Residuals: 12 BIC: 148.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -38.7871 124.383 -0.312 0.761 -309.795 232.221
C(dose)[T.1] 44.0190 16.429 2.679 0.020 8.224 79.814
expression 16.0560 18.727 0.857 0.408 -24.746 56.858
Omnibus: 1.904 Durbin-Watson: 0.724
Prob(Omnibus): 0.386 Jarque-Bera (JB): 1.448
Skew: -0.610 Prob(JB): 0.485
Kurtosis: 2.090 Cond. No. 114.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:31:20 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.170
Model: OLS Adj. R-squared: 0.106
Method: Least Squares F-statistic: 2.660
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.127
Time: 03:31:20 Log-Likelihood: -73.904
No. Observations: 15 AIC: 151.8
Df Residuals: 13 BIC: 153.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -140.4869 143.874 -0.976 0.347 -451.307 170.334
expression 34.4988 21.154 1.631 0.127 -11.201 80.198
Omnibus: 2.053 Durbin-Watson: 1.556
Prob(Omnibus): 0.358 Jarque-Bera (JB): 1.354
Skew: 0.504 Prob(JB): 0.508
Kurtosis: 1.928 Cond. No. 108.