AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.171 | 0.055 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.710 |
Model: | OLS | Adj. R-squared: | 0.664 |
Method: | Least Squares | F-statistic: | 15.49 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.44e-05 |
Time: | 22:51:22 | Log-Likelihood: | -98.880 |
No. Observations: | 23 | AIC: | 205.8 |
Df Residuals: | 19 | BIC: | 210.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -108.0583 | 121.456 | -0.890 | 0.385 | -362.269 146.152 |
C(dose)[T.1] | 57.6013 | 161.938 | 0.356 | 0.726 | -281.338 396.541 |
expression | 22.9545 | 17.163 | 1.337 | 0.197 | -12.967 58.876 |
expression:C(dose)[T.1] | -1.9227 | 22.298 | -0.086 | 0.932 | -48.593 44.748 |
Omnibus: | 0.307 | Durbin-Watson: | 2.121 |
Prob(Omnibus): | 0.858 | Jarque-Bera (JB): | 0.476 |
Skew: | 0.059 | Prob(JB): | 0.788 |
Kurtosis: | 2.305 | Cond. No. | 398. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.710 |
Model: | OLS | Adj. R-squared: | 0.681 |
Method: | Least Squares | F-statistic: | 24.44 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 4.26e-06 |
Time: | 22:51:22 | Log-Likelihood: | -98.884 |
No. Observations: | 23 | AIC: | 203.8 |
Df Residuals: | 20 | BIC: | 207.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -100.0061 | 75.710 | -1.321 | 0.201 | -257.935 57.922 |
C(dose)[T.1] | 43.6619 | 9.278 | 4.706 | 0.000 | 24.308 63.015 |
expression | 21.8154 | 10.682 | 2.042 | 0.055 | -0.466 44.097 |
Omnibus: | 0.286 | Durbin-Watson: | 2.086 |
Prob(Omnibus): | 0.867 | Jarque-Bera (JB): | 0.464 |
Skew: | 0.068 | Prob(JB): | 0.793 |
Kurtosis: | 2.318 | Cond. No. | 142. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:51:22 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.388 |
Model: | OLS | Adj. R-squared: | 0.359 |
Method: | Least Squares | F-statistic: | 13.32 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00150 |
Time: | 22:51:22 | Log-Likelihood: | -107.46 |
No. Observations: | 23 | AIC: | 218.9 |
Df Residuals: | 21 | BIC: | 221.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -266.0073 | 94.904 | -2.803 | 0.011 | -463.371 -68.644 |
expression | 47.4821 | 13.011 | 3.649 | 0.001 | 20.424 74.540 |
Omnibus: | 1.107 | Durbin-Watson: | 2.629 |
Prob(Omnibus): | 0.575 | Jarque-Bera (JB): | 1.049 |
Skew: | 0.420 | Prob(JB): | 0.592 |
Kurtosis: | 2.377 | Cond. No. | 125. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.878 | 0.116 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.559 |
Model: | OLS | Adj. R-squared: | 0.438 |
Method: | Least Squares | F-statistic: | 4.641 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0248 |
Time: | 22:51:22 | Log-Likelihood: | -69.166 |
No. Observations: | 15 | AIC: | 146.3 |
Df Residuals: | 11 | BIC: | 149.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -157.4231 | 173.621 | -0.907 | 0.384 | -539.560 224.714 |
C(dose)[T.1] | -34.2259 | 346.932 | -0.099 | 0.923 | -797.817 729.365 |
expression | 33.5885 | 25.886 | 1.298 | 0.221 | -23.386 90.563 |
expression:C(dose)[T.1] | 15.4060 | 54.280 | 0.284 | 0.782 | -104.064 134.876 |
Omnibus: | 1.036 | Durbin-Watson: | 1.116 |
Prob(Omnibus): | 0.596 | Jarque-Bera (JB): | 0.504 |
Skew: | -0.442 | Prob(JB): | 0.777 |
Kurtosis: | 2.838 | Cond. No. | 373. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.555 |
Model: | OLS | Adj. R-squared: | 0.481 |
Method: | Least Squares | F-statistic: | 7.496 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00772 |
Time: | 22:51:23 | Log-Likelihood: | -69.221 |
No. Observations: | 15 | AIC: | 144.4 |
Df Residuals: | 12 | BIC: | 146.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -180.8781 | 146.726 | -1.233 | 0.241 | -500.566 138.810 |
C(dose)[T.1] | 64.1185 | 16.649 | 3.851 | 0.002 | 27.844 100.393 |
expression | 37.0922 | 21.864 | 1.697 | 0.116 | -10.545 84.729 |
Omnibus: | 1.526 | Durbin-Watson: | 1.155 |
Prob(Omnibus): | 0.466 | Jarque-Bera (JB): | 0.851 |
Skew: | -0.576 | Prob(JB): | 0.653 |
Kurtosis: | 2.810 | Cond. No. | 139. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:51:23 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.006 |
Model: | OLS | Adj. R-squared: | -0.071 |
Method: | Least Squares | F-statistic: | 0.07686 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.786 |
Time: | 22:51:23 | Log-Likelihood: | -75.256 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 141.5748 | 173.108 | 0.818 | 0.428 | -232.402 515.552 |
expression | -7.3935 | 26.669 | -0.277 | 0.786 | -65.009 50.222 |
Omnibus: | 0.527 | Durbin-Watson: | 1.498 |
Prob(Omnibus): | 0.768 | Jarque-Bera (JB): | 0.551 |
Skew: | -0.034 | Prob(JB): | 0.759 |
Kurtosis: | 2.063 | Cond. No. | 114. |