AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.021 0.324 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.666
Model: OLS Adj. R-squared: 0.613
Method: Least Squares F-statistic: 12.64
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.99e-05
Time: 06:21:22 Log-Likelihood: -100.49
No. Observations: 23 AIC: 209.0
Df Residuals: 19 BIC: 213.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 15.8497 54.078 0.293 0.773 -97.337 129.036
C(dose)[T.1] 51.7966 80.111 0.647 0.526 -115.878 219.472
expression 10.0150 14.030 0.714 0.484 -19.350 39.380
expression:C(dose)[T.1] 0.5937 20.999 0.028 0.978 -43.358 44.546
Omnibus: 0.077 Durbin-Watson: 2.039
Prob(Omnibus): 0.962 Jarque-Bera (JB): 0.292
Skew: 0.064 Prob(JB): 0.864
Kurtosis: 2.463 Cond. No. 94.4

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.666
Model: OLS Adj. R-squared: 0.633
Method: Least Squares F-statistic: 19.95
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.72e-05
Time: 06:21:22 Log-Likelihood: -100.49
No. Observations: 23 AIC: 207.0
Df Residuals: 20 BIC: 210.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 14.8346 39.418 0.376 0.711 -67.390 97.059
C(dose)[T.1] 54.0480 8.583 6.297 0.000 36.144 71.952
expression 10.2800 10.175 1.010 0.324 -10.945 31.505
Omnibus: 0.079 Durbin-Watson: 2.042
Prob(Omnibus): 0.961 Jarque-Bera (JB): 0.297
Skew: 0.057 Prob(JB): 0.862
Kurtosis: 2.455 Cond. No. 37.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 06:21:22 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.004
Model: OLS Adj. R-squared: -0.043
Method: Least Squares F-statistic: 0.08654
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.772
Time: 06:21:22 Log-Likelihood: -113.06
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 60.6267 65.295 0.929 0.364 -75.161 196.414
expression 5.0277 17.091 0.294 0.772 -30.515 40.571
Omnibus: 2.813 Durbin-Watson: 2.565
Prob(Omnibus): 0.245 Jarque-Bera (JB): 1.473
Skew: 0.294 Prob(JB): 0.479
Kurtosis: 1.908 Cond. No. 37.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.001 0.973 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.598
Model: OLS Adj. R-squared: 0.489
Method: Least Squares F-statistic: 5.462
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0152
Time: 06:21:22 Log-Likelihood: -68.459
No. Observations: 15 AIC: 144.9
Df Residuals: 11 BIC: 147.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 165.8274 76.781 2.160 0.054 -3.166 334.821
C(dose)[T.1] -166.6830 108.074 -1.542 0.151 -404.553 71.187
expression -22.5494 17.438 -1.293 0.222 -60.930 15.831
expression:C(dose)[T.1] 53.9783 26.674 2.024 0.068 -4.731 112.688
Omnibus: 1.728 Durbin-Watson: 0.793
Prob(Omnibus): 0.421 Jarque-Bera (JB): 0.855
Skew: -0.584 Prob(JB): 0.652
Kurtosis: 2.937 Cond. No. 85.7

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 4.886
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0280
Time: 06:21:22 Log-Likelihood: -70.832
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 65.1631 65.597 0.993 0.340 -77.761 208.087
C(dose)[T.1] 49.5213 18.261 2.712 0.019 9.734 89.309
expression 0.5192 14.800 0.035 0.973 -31.727 32.765
Omnibus: 2.754 Durbin-Watson: 0.812
Prob(Omnibus): 0.252 Jarque-Bera (JB): 1.887
Skew: -0.849 Prob(JB): 0.389
Kurtosis: 2.631 Cond. No. 36.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 06:21:22 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.111
Model: OLS Adj. R-squared: 0.043
Method: Least Squares F-statistic: 1.624
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.225
Time: 06:21:22 Log-Likelihood: -74.417
No. Observations: 15 AIC: 152.8
Df Residuals: 13 BIC: 154.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 173.5978 63.449 2.736 0.017 36.524 310.671
expression -19.8341 15.564 -1.274 0.225 -53.458 13.789
Omnibus: 2.792 Durbin-Watson: 1.497
Prob(Omnibus): 0.248 Jarque-Bera (JB): 1.323
Skew: 0.363 Prob(JB): 0.516
Kurtosis: 1.739 Cond. No. 28.6