AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.806 0.380 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.667
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 12.69
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.77e-05
Time: 03:59:01 Log-Likelihood: -100.46
No. Observations: 23 AIC: 208.9
Df Residuals: 19 BIC: 213.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 117.7620 68.579 1.717 0.102 -25.775 261.299
C(dose)[T.1] 11.8742 88.283 0.135 0.894 -172.905 196.653
expression -10.7677 11.574 -0.930 0.364 -34.992 13.456
expression:C(dose)[T.1] 7.2591 14.523 0.500 0.623 -23.137 37.655
Omnibus: 0.135 Durbin-Watson: 2.274
Prob(Omnibus): 0.935 Jarque-Bera (JB): 0.356
Skew: 0.034 Prob(JB): 0.837
Kurtosis: 2.395 Cond. No. 175.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.663
Model: OLS Adj. R-squared: 0.629
Method: Least Squares F-statistic: 19.64
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.91e-05
Time: 03:59:01 Log-Likelihood: -100.61
No. Observations: 23 AIC: 207.2
Df Residuals: 20 BIC: 210.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 90.5506 40.917 2.213 0.039 5.200 175.902
C(dose)[T.1] 55.7631 9.013 6.187 0.000 36.962 74.564
expression -6.1573 6.859 -0.898 0.380 -20.465 8.150
Omnibus: 0.015 Durbin-Watson: 2.068
Prob(Omnibus): 0.993 Jarque-Bera (JB): 0.122
Skew: 0.037 Prob(JB): 0.941
Kurtosis: 2.650 Cond. No. 60.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:59:01 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.017
Model: OLS Adj. R-squared: -0.030
Method: Least Squares F-statistic: 0.3628
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.553
Time: 03:59:01 Log-Likelihood: -112.91
No. Observations: 23 AIC: 229.8
Df Residuals: 21 BIC: 232.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 39.7269 66.775 0.595 0.558 -99.139 178.593
expression 6.5658 10.900 0.602 0.553 -16.103 29.234
Omnibus: 2.773 Durbin-Watson: 2.385
Prob(Omnibus): 0.250 Jarque-Bera (JB): 1.434
Skew: 0.274 Prob(JB): 0.488
Kurtosis: 1.906 Cond. No. 58.7

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
7.322 0.019 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.673
Model: OLS Adj. R-squared: 0.583
Method: Least Squares F-statistic: 7.532
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00516
Time: 03:59:01 Log-Likelihood: -66.926
No. Observations: 15 AIC: 141.9
Df Residuals: 11 BIC: 144.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -75.8740 101.792 -0.745 0.472 -299.916 148.168
C(dose)[T.1] -57.5818 147.530 -0.390 0.704 -382.293 267.129
expression 24.1721 17.099 1.414 0.185 -13.463 61.807
expression:C(dose)[T.1] 17.4317 24.615 0.708 0.494 -36.746 71.609
Omnibus: 0.402 Durbin-Watson: 1.367
Prob(Omnibus): 0.818 Jarque-Bera (JB): 0.449
Skew: 0.312 Prob(JB): 0.799
Kurtosis: 2.428 Cond. No. 190.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.601
Method: Least Squares F-statistic: 11.53
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00161
Time: 03:59:01 Log-Likelihood: -67.261
No. Observations: 15 AIC: 140.5
Df Residuals: 12 BIC: 142.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -125.7410 71.962 -1.747 0.106 -282.533 31.051
C(dose)[T.1] 46.5054 12.444 3.737 0.003 19.393 73.618
expression 32.5836 12.042 2.706 0.019 6.347 58.821
Omnibus: 0.613 Durbin-Watson: 1.557
Prob(Omnibus): 0.736 Jarque-Bera (JB): 0.614
Skew: 0.185 Prob(JB): 0.736
Kurtosis: 2.081 Cond. No. 71.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:59:01 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.259
Model: OLS Adj. R-squared: 0.202
Method: Least Squares F-statistic: 4.548
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0526
Time: 03:59:01 Log-Likelihood: -73.050
No. Observations: 15 AIC: 150.1
Df Residuals: 13 BIC: 151.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -122.4194 101.697 -1.204 0.250 -342.122 97.283
expression 36.1804 16.965 2.133 0.053 -0.469 72.830
Omnibus: 1.439 Durbin-Watson: 2.026
Prob(Omnibus): 0.487 Jarque-Bera (JB): 1.006
Skew: 0.361 Prob(JB): 0.605
Kurtosis: 1.956 Cond. No. 71.6