AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.205 0.655 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.671
Model: OLS Adj. R-squared: 0.619
Method: Least Squares F-statistic: 12.91
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.88e-05
Time: 05:22:24 Log-Likelihood: -100.33
No. Observations: 23 AIC: 208.7
Df Residuals: 19 BIC: 213.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 139.2268 236.452 0.589 0.563 -355.672 634.126
C(dose)[T.1] -307.2041 351.183 -0.875 0.393 -1042.239 427.830
expression -9.2277 25.656 -0.360 0.723 -62.925 44.470
expression:C(dose)[T.1] 38.8463 37.906 1.025 0.318 -40.492 118.185
Omnibus: 0.227 Durbin-Watson: 1.750
Prob(Omnibus): 0.893 Jarque-Bera (JB): 0.161
Skew: -0.169 Prob(JB): 0.923
Kurtosis: 2.768 Cond. No. 962.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.618
Method: Least Squares F-statistic: 18.79
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.56e-05
Time: 05:22:24 Log-Likelihood: -100.95
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -24.7248 174.330 -0.142 0.889 -388.371 338.921
C(dose)[T.1] 52.5750 8.886 5.917 0.000 34.039 71.111
expression 8.5672 18.910 0.453 0.655 -30.878 48.013
Omnibus: 0.052 Durbin-Watson: 1.970
Prob(Omnibus): 0.975 Jarque-Bera (JB): 0.273
Skew: -0.011 Prob(JB): 0.872
Kurtosis: 2.467 Cond. No. 375.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:22:24 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.045
Model: OLS Adj. R-squared: -0.001
Method: Least Squares F-statistic: 0.9799
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.333
Time: 05:22:24 Log-Likelihood: -112.58
No. Observations: 23 AIC: 229.2
Df Residuals: 21 BIC: 231.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -195.6253 278.246 -0.703 0.490 -774.269 383.018
expression 29.7476 30.052 0.990 0.333 -32.748 92.243
Omnibus: 3.141 Durbin-Watson: 2.618
Prob(Omnibus): 0.208 Jarque-Bera (JB): 1.329
Skew: 0.089 Prob(JB): 0.515
Kurtosis: 1.836 Cond. No. 369.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.622 0.053 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.603
Model: OLS Adj. R-squared: 0.495
Method: Least Squares F-statistic: 5.571
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0143
Time: 05:22:24 Log-Likelihood: -68.370
No. Observations: 15 AIC: 144.7
Df Residuals: 11 BIC: 147.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -384.0431 327.315 -1.173 0.265 -1104.458 336.372
C(dose)[T.1] 113.5339 412.789 0.275 0.788 -795.008 1022.076
expression 47.0537 34.097 1.380 0.195 -27.994 122.101
expression:C(dose)[T.1] -7.2756 42.773 -0.170 0.868 -101.418 86.867
Omnibus: 2.093 Durbin-Watson: 0.582
Prob(Omnibus): 0.351 Jarque-Bera (JB): 1.626
Skew: -0.709 Prob(JB): 0.444
Kurtosis: 2.232 Cond. No. 819.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.602
Model: OLS Adj. R-squared: 0.536
Method: Least Squares F-statistic: 9.077
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00397
Time: 05:22:24 Log-Likelihood: -68.389
No. Observations: 15 AIC: 142.8
Df Residuals: 12 BIC: 144.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -339.6815 189.615 -1.791 0.098 -752.816 73.453
C(dose)[T.1] 43.3607 13.646 3.178 0.008 13.628 73.093
expression 42.4302 19.736 2.150 0.053 -0.571 85.431
Omnibus: 2.063 Durbin-Watson: 0.581
Prob(Omnibus): 0.356 Jarque-Bera (JB): 1.600
Skew: -0.719 Prob(JB): 0.449
Kurtosis: 2.297 Cond. No. 278.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:22:24 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.267
Model: OLS Adj. R-squared: 0.211
Method: Least Squares F-statistic: 4.741
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0485
Time: 05:22:24 Log-Likelihood: -72.968
No. Observations: 15 AIC: 149.9
Df Residuals: 13 BIC: 151.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -437.1581 243.951 -1.792 0.096 -964.183 89.867
expression 54.9043 25.216 2.177 0.048 0.428 109.381
Omnibus: 2.050 Durbin-Watson: 1.737
Prob(Omnibus): 0.359 Jarque-Bera (JB): 1.073
Skew: 0.268 Prob(JB): 0.585
Kurtosis: 1.804 Cond. No. 274.