AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.060 | 0.167 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.682 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 13.57 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 5.75e-05 |
Time: | 04:24:28 | Log-Likelihood: | -99.935 |
No. Observations: | 23 | AIC: | 207.9 |
Df Residuals: | 19 | BIC: | 212.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -182.7755 | 218.787 | -0.835 | 0.414 | -640.701 275.150 |
C(dose)[T.1] | 51.3549 | 347.601 | 0.148 | 0.884 | -676.182 778.892 |
expression | 29.2710 | 27.013 | 1.084 | 0.292 | -27.269 85.811 |
expression:C(dose)[T.1] | 0.5681 | 43.205 | 0.013 | 0.990 | -89.862 90.998 |
Omnibus: | 0.340 | Durbin-Watson: | 2.093 |
Prob(Omnibus): | 0.844 | Jarque-Bera (JB): | 0.500 |
Skew: | 0.180 | Prob(JB): | 0.779 |
Kurtosis: | 2.373 | Cond. No. | 822. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.682 |
Model: | OLS | Adj. R-squared: | 0.650 |
Method: | Least Squares | F-statistic: | 21.43 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.06e-05 |
Time: | 04:24:28 | Log-Likelihood: | -99.935 |
No. Observations: | 23 | AIC: | 205.9 |
Df Residuals: | 20 | BIC: | 209.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -184.5735 | 166.465 | -1.109 | 0.281 | -531.814 162.667 |
C(dose)[T.1] | 55.9239 | 8.543 | 6.546 | 0.000 | 38.104 73.744 |
expression | 29.4931 | 20.549 | 1.435 | 0.167 | -13.370 72.357 |
Omnibus: | 0.333 | Durbin-Watson: | 2.094 |
Prob(Omnibus): | 0.846 | Jarque-Bera (JB): | 0.496 |
Skew: | 0.177 | Prob(JB): | 0.780 |
Kurtosis: | 2.373 | Cond. No. | 327. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:24:28 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.048 |
Method: | Least Squares | F-statistic: | 0.001024 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.975 |
Time: | 04:24:28 | Log-Likelihood: | -113.10 |
No. Observations: | 23 | AIC: | 230.2 |
Df Residuals: | 21 | BIC: | 232.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 70.7594 | 279.981 | 0.253 | 0.803 | -511.492 653.011 |
expression | 1.1122 | 34.750 | 0.032 | 0.975 | -71.155 73.379 |
Omnibus: | 3.259 | Durbin-Watson: | 2.494 |
Prob(Omnibus): | 0.196 | Jarque-Bera (JB): | 1.565 |
Skew: | 0.292 | Prob(JB): | 0.457 |
Kurtosis: | 1.863 | Cond. No. | 317. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.907 | 0.360 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.490 |
Model: | OLS | Adj. R-squared: | 0.352 |
Method: | Least Squares | F-statistic: | 3.530 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0521 |
Time: | 04:24:28 | Log-Likelihood: | -70.243 |
No. Observations: | 15 | AIC: | 148.5 |
Df Residuals: | 11 | BIC: | 151.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -163.4814 | 256.350 | -0.638 | 0.537 | -727.704 400.741 |
C(dose)[T.1] | 164.1122 | 469.171 | 0.350 | 0.733 | -868.525 1196.750 |
expression | 27.4013 | 30.389 | 0.902 | 0.387 | -39.485 94.288 |
expression:C(dose)[T.1] | -13.9170 | 54.851 | -0.254 | 0.804 | -134.642 106.809 |
Omnibus: | 2.070 | Durbin-Watson: | 0.666 |
Prob(Omnibus): | 0.355 | Jarque-Bera (JB): | 1.605 |
Skew: | -0.720 | Prob(JB): | 0.448 |
Kurtosis: | 2.295 | Cond. No. | 632. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.487 |
Model: | OLS | Adj. R-squared: | 0.402 |
Method: | Least Squares | F-statistic: | 5.707 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0181 |
Time: | 04:24:28 | Log-Likelihood: | -70.287 |
No. Observations: | 15 | AIC: | 146.6 |
Df Residuals: | 12 | BIC: | 148.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -127.4821 | 205.013 | -0.622 | 0.546 | -574.166 319.202 |
C(dose)[T.1] | 45.1449 | 15.762 | 2.864 | 0.014 | 10.802 79.488 |
expression | 23.1294 | 24.293 | 0.952 | 0.360 | -29.800 76.058 |
Omnibus: | 2.111 | Durbin-Watson: | 0.661 |
Prob(Omnibus): | 0.348 | Jarque-Bera (JB): | 1.627 |
Skew: | -0.691 | Prob(JB): | 0.443 |
Kurtosis: | 2.167 | Cond. No. | 235. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:24:28 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.137 |
Model: | OLS | Adj. R-squared: | 0.071 |
Method: | Least Squares | F-statistic: | 2.066 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.174 |
Time: | 04:24:28 | Log-Likelihood: | -74.194 |
No. Observations: | 15 | AIC: | 152.4 |
Df Residuals: | 13 | BIC: | 153.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -263.4494 | 248.630 | -1.060 | 0.309 | -800.582 273.684 |
expression | 41.9131 | 29.160 | 1.437 | 0.174 | -21.082 104.909 |
Omnibus: | 2.567 | Durbin-Watson: | 1.617 |
Prob(Omnibus): | 0.277 | Jarque-Bera (JB): | 1.163 |
Skew: | 0.253 | Prob(JB): | 0.559 |
Kurtosis: | 1.733 | Cond. No. | 228. |