AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.065 0.801 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.608
Method: Least Squares F-statistic: 12.36
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000103
Time: 03:47:15 Log-Likelihood: -100.66
No. Observations: 23 AIC: 209.3
Df Residuals: 19 BIC: 213.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 72.4176 45.985 1.575 0.132 -23.831 168.666
C(dose)[T.1] 2.1964 64.950 0.034 0.973 -133.746 138.139
expression -3.0827 7.716 -0.400 0.694 -19.232 13.067
expression:C(dose)[T.1] 8.3618 10.609 0.788 0.440 -13.843 30.567
Omnibus: 0.438 Durbin-Watson: 1.974
Prob(Omnibus): 0.803 Jarque-Bera (JB): 0.567
Skew: 0.165 Prob(JB): 0.753
Kurtosis: 2.306 Cond. No. 121.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 18.59
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.74e-05
Time: 03:47:15 Log-Likelihood: -101.03
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 46.2916 31.570 1.466 0.158 -19.562 112.145
C(dose)[T.1] 52.8934 8.926 5.926 0.000 34.274 71.513
expression 1.3402 5.245 0.256 0.801 -9.601 12.282
Omnibus: 0.216 Durbin-Watson: 1.945
Prob(Omnibus): 0.898 Jarque-Bera (JB): 0.416
Skew: 0.071 Prob(JB): 0.812
Kurtosis: 2.356 Cond. No. 45.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:47:15 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.036
Model: OLS Adj. R-squared: -0.010
Method: Least Squares F-statistic: 0.7854
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.386
Time: 03:47:15 Log-Likelihood: -112.68
No. Observations: 23 AIC: 229.4
Df Residuals: 21 BIC: 231.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 34.9147 51.049 0.684 0.501 -71.248 141.077
expression 7.3867 8.335 0.886 0.386 -9.947 24.720
Omnibus: 1.493 Durbin-Watson: 2.506
Prob(Omnibus): 0.474 Jarque-Bera (JB): 1.037
Skew: 0.221 Prob(JB): 0.595
Kurtosis: 2.059 Cond. No. 45.3

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.074 0.790 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.453
Model: OLS Adj. R-squared: 0.304
Method: Least Squares F-statistic: 3.040
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0746
Time: 03:47:15 Log-Likelihood: -70.772
No. Observations: 15 AIC: 149.5
Df Residuals: 11 BIC: 152.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 72.2122 55.812 1.294 0.222 -50.630 195.054
C(dose)[T.1] 65.1290 91.898 0.709 0.493 -137.136 267.394
expression -1.2430 14.166 -0.088 0.932 -32.421 29.935
expression:C(dose)[T.1] -3.0531 20.604 -0.148 0.885 -48.402 42.295
Omnibus: 1.875 Durbin-Watson: 0.920
Prob(Omnibus): 0.392 Jarque-Bera (JB): 1.366
Skew: -0.697 Prob(JB): 0.505
Kurtosis: 2.505 Cond. No. 69.3

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.452
Model: OLS Adj. R-squared: 0.361
Method: Least Squares F-statistic: 4.952
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0270
Time: 03:47:15 Log-Likelihood: -70.787
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 77.7664 39.633 1.962 0.073 -8.586 164.119
C(dose)[T.1] 51.8116 18.394 2.817 0.016 11.735 91.888
expression -2.6862 9.858 -0.272 0.790 -24.166 18.793
Omnibus: 2.203 Durbin-Watson: 0.917
Prob(Omnibus): 0.332 Jarque-Bera (JB): 1.566
Skew: -0.758 Prob(JB): 0.457
Kurtosis: 2.544 Cond. No. 24.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:47:15 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.090
Model: OLS Adj. R-squared: 0.020
Method: Least Squares F-statistic: 1.285
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.278
Time: 03:47:15 Log-Likelihood: -74.593
No. Observations: 15 AIC: 153.2
Df Residuals: 13 BIC: 154.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 42.1119 46.508 0.905 0.382 -58.362 142.586
expression 11.8035 10.414 1.133 0.278 -10.695 34.302
Omnibus: 1.003 Durbin-Watson: 1.170
Prob(Omnibus): 0.606 Jarque-Bera (JB): 0.741
Skew: -0.162 Prob(JB): 0.690
Kurtosis: 1.960 Cond. No. 22.5