AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.050 | 0.825 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.655 |
Model: | OLS | Adj. R-squared: | 0.601 |
Method: | Least Squares | F-statistic: | 12.04 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.000121 |
Time: | 19:43:08 | Log-Likelihood: | -100.85 |
No. Observations: | 23 | AIC: | 209.7 |
Df Residuals: | 19 | BIC: | 214.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 16.3577 | 96.690 | 0.169 | 0.867 | -186.017 218.733 |
C(dose)[T.1] | 220.6865 | 309.246 | 0.714 | 0.484 | -426.572 867.945 |
expression | 4.4920 | 11.452 | 0.392 | 0.699 | -19.476 28.460 |
expression:C(dose)[T.1] | -18.5862 | 33.952 | -0.547 | 0.590 | -89.648 52.475 |
Omnibus: | 0.777 | Durbin-Watson: | 1.952 |
Prob(Omnibus): | 0.678 | Jarque-Bera (JB): | 0.808 |
Skew: | 0.308 | Prob(JB): | 0.668 |
Kurtosis: | 2.320 | Cond. No. | 719. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.57 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 2.76e-05 |
Time: | 19:43:08 | Log-Likelihood: | -101.03 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 34.1746 | 89.440 | 0.382 | 0.706 | -152.394 220.743 |
C(dose)[T.1] | 51.5258 | 11.908 | 4.327 | 0.000 | 26.685 76.366 |
expression | 2.3775 | 10.590 | 0.225 | 0.825 | -19.713 24.468 |
Omnibus: | 0.243 | Durbin-Watson: | 1.855 |
Prob(Omnibus): | 0.886 | Jarque-Bera (JB): | 0.435 |
Skew: | 0.073 | Prob(JB): | 0.804 |
Kurtosis: | 2.342 | Cond. No. | 183. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 19:43:08 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.322 |
Model: | OLS | Adj. R-squared: | 0.290 |
Method: | Least Squares | F-statistic: | 9.985 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.00472 |
Time: | 19:43:08 | Log-Likelihood: | -108.63 |
No. Observations: | 23 | AIC: | 221.3 |
Df Residuals: | 21 | BIC: | 223.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -214.0820 | 93.167 | -2.298 | 0.032 | -407.834 -20.330 |
expression | 33.4219 | 10.577 | 3.160 | 0.005 | 11.426 55.418 |
Omnibus: | 1.530 | Durbin-Watson: | 1.944 |
Prob(Omnibus): | 0.465 | Jarque-Bera (JB): | 0.943 |
Skew: | -0.031 | Prob(JB): | 0.624 |
Kurtosis: | 2.010 | Cond. No. | 140. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
8.028 | 0.015 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.670 |
Model: | OLS | Adj. R-squared: | 0.581 |
Method: | Least Squares | F-statistic: | 7.460 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.00534 |
Time: | 19:43:08 | Log-Likelihood: | -66.974 |
No. Observations: | 15 | AIC: | 141.9 |
Df Residuals: | 11 | BIC: | 144.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -93.3230 | 116.568 | -0.801 | 0.440 | -349.887 163.241 |
C(dose)[T.1] | 84.4633 | 128.582 | 0.657 | 0.525 | -198.543 367.470 |
expression | 27.3510 | 19.770 | 1.383 | 0.194 | -16.163 70.865 |
expression:C(dose)[T.1] | -3.5251 | 22.234 | -0.159 | 0.877 | -52.461 45.411 |
Omnibus: | 4.021 | Durbin-Watson: | 1.552 |
Prob(Omnibus): | 0.134 | Jarque-Bera (JB): | 2.167 |
Skew: | -0.924 | Prob(JB): | 0.338 |
Kurtosis: | 3.229 | Cond. No. | 175. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.670 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 12.17 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.00130 |
Time: | 19:43:08 | Log-Likelihood: | -66.991 |
No. Observations: | 15 | AIC: | 140.0 |
Df Residuals: | 12 | BIC: | 142.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -76.9412 | 51.725 | -1.487 | 0.163 | -189.641 35.758 |
C(dose)[T.1] | 64.1957 | 13.284 | 4.833 | 0.000 | 35.253 93.139 |
expression | 24.5637 | 8.670 | 2.833 | 0.015 | 5.674 43.453 |
Omnibus: | 4.090 | Durbin-Watson: | 1.511 |
Prob(Omnibus): | 0.129 | Jarque-Bera (JB): | 2.228 |
Skew: | -0.937 | Prob(JB): | 0.328 |
Kurtosis: | 3.222 | Cond. No. | 49.7 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.00629 |
Time: | 19:43:08 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.027 |
Model: | OLS | Adj. R-squared: | -0.048 |
Method: | Least Squares | F-statistic: | 0.3600 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.559 |
Time: | 19:43:08 | Log-Likelihood: | -75.095 |
No. Observations: | 15 | AIC: | 154.2 |
Df Residuals: | 13 | BIC: | 155.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 49.9907 | 73.484 | 0.680 | 0.508 | -108.762 208.744 |
expression | 7.8672 | 13.113 | 0.600 | 0.559 | -20.461 36.195 |
Omnibus: | 0.833 | Durbin-Watson: | 1.890 |
Prob(Omnibus): | 0.659 | Jarque-Bera (JB): | 0.657 |
Skew: | 0.012 | Prob(JB): | 0.720 |
Kurtosis: | 1.975 | Cond. No. | 42.4 |