AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.293 | 0.146 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.719 |
Model: | OLS | Adj. R-squared: | 0.675 |
Method: | Least Squares | F-statistic: | 16.23 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.78e-05 |
Time: | 04:31:22 | Log-Likelihood: | -98.492 |
No. Observations: | 23 | AIC: | 205.0 |
Df Residuals: | 19 | BIC: | 209.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 135.3407 | 175.009 | 0.773 | 0.449 | -230.958 501.640 |
C(dose)[T.1] | 538.4784 | 318.144 | 1.693 | 0.107 | -127.406 1204.362 |
expression | -8.8782 | 19.141 | -0.464 | 0.648 | -48.942 31.185 |
expression:C(dose)[T.1] | -52.7975 | 34.689 | -1.522 | 0.144 | -125.403 19.808 |
Omnibus: | 0.181 | Durbin-Watson: | 1.788 |
Prob(Omnibus): | 0.913 | Jarque-Bera (JB): | 0.083 |
Skew: | -0.114 | Prob(JB): | 0.960 |
Kurtosis: | 2.816 | Cond. No. | 878. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.685 |
Model: | OLS | Adj. R-squared: | 0.654 |
Method: | Least Squares | F-statistic: | 21.76 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.57e-06 |
Time: | 04:31:22 | Log-Likelihood: | -99.815 |
No. Observations: | 23 | AIC: | 205.6 |
Df Residuals: | 20 | BIC: | 209.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 282.2473 | 150.715 | 1.873 | 0.076 | -32.138 596.632 |
C(dose)[T.1] | 54.4128 | 8.337 | 6.527 | 0.000 | 37.022 71.803 |
expression | -24.9540 | 16.481 | -1.514 | 0.146 | -59.332 9.424 |
Omnibus: | 0.126 | Durbin-Watson: | 2.016 |
Prob(Omnibus): | 0.939 | Jarque-Bera (JB): | 0.072 |
Skew: | 0.088 | Prob(JB): | 0.964 |
Kurtosis: | 2.788 | Cond. No. | 337. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:31:22 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.015 |
Model: | OLS | Adj. R-squared: | -0.032 |
Method: | Least Squares | F-statistic: | 0.3101 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.583 |
Time: | 04:31:22 | Log-Likelihood: | -112.94 |
No. Observations: | 23 | AIC: | 229.9 |
Df Residuals: | 21 | BIC: | 232.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 224.3226 | 259.759 | 0.864 | 0.398 | -315.875 764.520 |
expression | -15.7884 | 28.350 | -0.557 | 0.583 | -74.746 43.169 |
Omnibus: | 4.366 | Durbin-Watson: | 2.485 |
Prob(Omnibus): | 0.113 | Jarque-Bera (JB): | 1.667 |
Skew: | 0.227 | Prob(JB): | 0.435 |
Kurtosis: | 1.762 | Cond. No. | 336. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.157 | 0.699 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.461 |
Model: | OLS | Adj. R-squared: | 0.314 |
Method: | Least Squares | F-statistic: | 3.137 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0693 |
Time: | 04:31:22 | Log-Likelihood: | -70.664 |
No. Observations: | 15 | AIC: | 149.3 |
Df Residuals: | 11 | BIC: | 152.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 125.4463 | 314.762 | 0.399 | 0.698 | -567.339 818.232 |
C(dose)[T.1] | 273.1545 | 682.038 | 0.400 | 0.696 | -1228.002 1774.311 |
expression | -6.5567 | 35.546 | -0.184 | 0.857 | -84.794 71.680 |
expression:C(dose)[T.1] | -24.7975 | 76.083 | -0.326 | 0.751 | -192.254 142.660 |
Omnibus: | 2.592 | Durbin-Watson: | 0.833 |
Prob(Omnibus): | 0.274 | Jarque-Bera (JB): | 1.757 |
Skew: | -0.819 | Prob(JB): | 0.415 |
Kurtosis: | 2.644 | Cond. No. | 910. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.456 |
Model: | OLS | Adj. R-squared: | 0.365 |
Method: | Least Squares | F-statistic: | 5.027 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0260 |
Time: | 04:31:22 | Log-Likelihood: | -70.736 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 12 | BIC: | 149.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 173.3428 | 267.784 | 0.647 | 0.530 | -410.109 756.795 |
C(dose)[T.1] | 50.9273 | 16.238 | 3.136 | 0.009 | 15.549 86.306 |
expression | -11.9695 | 30.235 | -0.396 | 0.699 | -77.846 53.907 |
Omnibus: | 2.583 | Durbin-Watson: | 0.877 |
Prob(Omnibus): | 0.275 | Jarque-Bera (JB): | 1.831 |
Skew: | -0.826 | Prob(JB): | 0.400 |
Kurtosis: | 2.553 | Cond. No. | 311. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:31:22 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.010 |
Model: | OLS | Adj. R-squared: | -0.066 |
Method: | Least Squares | F-statistic: | 0.1292 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.725 |
Time: | 04:31:22 | Log-Likelihood: | -75.226 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -27.4089 | 337.004 | -0.081 | 0.936 | -755.461 700.643 |
expression | 13.5647 | 37.739 | 0.359 | 0.725 | -67.966 95.095 |
Omnibus: | 0.284 | Durbin-Watson: | 1.512 |
Prob(Omnibus): | 0.868 | Jarque-Bera (JB): | 0.443 |
Skew: | 0.015 | Prob(JB): | 0.802 |
Kurtosis: | 2.159 | Cond. No. | 301. |