AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.071 0.313 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.693
Model: OLS Adj. R-squared: 0.645
Method: Least Squares F-statistic: 14.32
Date: Tue, 28 Jan 2025 Prob (F-statistic): 4.08e-05
Time: 17:39:22 Log-Likelihood: -99.511
No. Observations: 23 AIC: 207.0
Df Residuals: 19 BIC: 211.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 62.8767 58.037 1.083 0.292 -58.596 184.349
C(dose)[T.1] 189.9451 105.644 1.798 0.088 -31.171 411.061
expression -1.3306 8.864 -0.150 0.882 -19.883 17.222
expression:C(dose)[T.1] -20.1822 15.768 -1.280 0.216 -53.185 12.821
Omnibus: 0.151 Durbin-Watson: 1.803
Prob(Omnibus): 0.927 Jarque-Bera (JB): 0.032
Skew: 0.049 Prob(JB): 0.984
Kurtosis: 2.846 Cond. No. 206.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.667
Model: OLS Adj. R-squared: 0.634
Method: Least Squares F-statistic: 20.02
Date: Tue, 28 Jan 2025 Prob (F-statistic): 1.68e-05
Time: 17:39:22 Log-Likelihood: -100.46
No. Observations: 23 AIC: 206.9
Df Residuals: 20 BIC: 210.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 104.4244 48.872 2.137 0.045 2.480 206.369
C(dose)[T.1] 55.1755 8.727 6.323 0.000 36.972 73.379
expression -7.7083 7.447 -1.035 0.313 -23.242 7.826
Omnibus: 0.032 Durbin-Watson: 1.823
Prob(Omnibus): 0.984 Jarque-Bera (JB): 0.244
Skew: 0.023 Prob(JB): 0.885
Kurtosis: 2.497 Cond. No. 78.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 28 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 17:39:22 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.046
Method: Least Squares F-statistic: 0.02314
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.881
Time: 17:39:22 Log-Likelihood: -113.09
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.2923 81.993 0.821 0.421 -103.222 237.807
expression 1.8745 12.322 0.152 0.881 -23.750 27.499
Omnibus: 3.193 Durbin-Watson: 2.491
Prob(Omnibus): 0.203 Jarque-Bera (JB): 1.568
Skew: 0.302 Prob(JB): 0.457
Kurtosis: 1.873 Cond. No. 77.3

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.023 0.882 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.455
Model: OLS Adj. R-squared: 0.306
Method: Least Squares F-statistic: 3.059
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0735
Time: 17:39:22 Log-Likelihood: -70.750
No. Observations: 15 AIC: 149.5
Df Residuals: 11 BIC: 152.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 86.7201 192.818 0.450 0.662 -337.669 511.109
C(dose)[T.1] -35.2557 274.141 -0.129 0.900 -638.635 568.124
expression -2.5194 25.133 -0.100 0.922 -57.837 52.798
expression:C(dose)[T.1] 12.0689 38.008 0.318 0.757 -71.586 95.724
Omnibus: 4.262 Durbin-Watson: 0.801
Prob(Omnibus): 0.119 Jarque-Bera (JB): 2.504
Skew: -1.000 Prob(JB): 0.286
Kurtosis: 3.099 Cond. No. 320.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.450
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 4.906
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0277
Time: 17:39:22 Log-Likelihood: -70.819
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 46.3112 139.326 0.332 0.745 -257.255 349.877
C(dose)[T.1] 51.4957 21.814 2.361 0.036 3.968 99.023
expression 2.7579 18.134 0.152 0.882 -36.752 42.268
Omnibus: 2.922 Durbin-Watson: 0.806
Prob(Omnibus): 0.232 Jarque-Bera (JB): 1.941
Skew: -0.868 Prob(JB): 0.379
Kurtosis: 2.703 Cond. No. 132.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00629
Time: 17:39:22 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.194
Model: OLS Adj. R-squared: 0.132
Method: Least Squares F-statistic: 3.136
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.100
Time: 17:39:22 Log-Likelihood: -73.679
No. Observations: 15 AIC: 151.4
Df Residuals: 13 BIC: 152.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 287.7692 109.995 2.616 0.021 50.140 525.399
expression -26.9119 15.198 -1.771 0.100 -59.745 5.921
Omnibus: 0.324 Durbin-Watson: 1.203
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.463
Skew: -0.026 Prob(JB): 0.793
Kurtosis: 2.141 Cond. No. 88.9