AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.615 0.218 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.676
Model: OLS Adj. R-squared: 0.625
Method: Least Squares F-statistic: 13.22
Date: Thu, 21 Nov 2024 Prob (F-statistic): 6.77e-05
Time: 06:23:27 Log-Likelihood: -100.14
No. Observations: 23 AIC: 208.3
Df Residuals: 19 BIC: 212.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -68.9304 127.061 -0.542 0.594 -334.872 197.011
C(dose)[T.1] 93.2399 163.871 0.569 0.576 -249.746 436.226
expression 17.5433 18.082 0.970 0.344 -20.303 55.389
expression:C(dose)[T.1] -5.3849 23.551 -0.229 0.822 -54.677 43.907
Omnibus: 0.223 Durbin-Watson: 2.087
Prob(Omnibus): 0.894 Jarque-Bera (JB): 0.042
Skew: 0.087 Prob(JB): 0.979
Kurtosis: 2.886 Cond. No. 363.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.675
Model: OLS Adj. R-squared: 0.643
Method: Least Squares F-statistic: 20.80
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.30e-05
Time: 06:23:27 Log-Likelihood: -100.17
No. Observations: 23 AIC: 206.3
Df Residuals: 20 BIC: 209.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -46.6485 79.581 -0.586 0.564 -212.652 119.355
C(dose)[T.1] 55.8251 8.660 6.446 0.000 37.760 73.890
expression 14.3688 11.307 1.271 0.218 -9.218 37.955
Omnibus: 0.208 Durbin-Watson: 2.052
Prob(Omnibus): 0.901 Jarque-Bera (JB): 0.023
Skew: 0.057 Prob(JB): 0.989
Kurtosis: 2.895 Cond. No. 134.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 06:23:27 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.01252
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.912
Time: 06:23:27 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 94.3536 131.000 0.720 0.479 -178.076 366.783
expression -2.1101 18.857 -0.112 0.912 -41.326 37.106
Omnibus: 3.105 Durbin-Watson: 2.478
Prob(Omnibus): 0.212 Jarque-Bera (JB): 1.528
Skew: 0.289 Prob(JB): 0.466
Kurtosis: 1.877 Cond. No. 129.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.001 0.977 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.453
Model: OLS Adj. R-squared: 0.304
Method: Least Squares F-statistic: 3.041
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0745
Time: 06:23:27 Log-Likelihood: -70.771
No. Observations: 15 AIC: 149.5
Df Residuals: 11 BIC: 152.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 39.4917 185.501 0.213 0.835 -368.794 447.778
C(dose)[T.1] 148.1360 328.030 0.452 0.660 -573.854 870.126
expression 3.7545 24.878 0.151 0.883 -51.002 58.511
expression:C(dose)[T.1] -12.9702 43.010 -0.302 0.769 -107.634 81.694
Omnibus: 3.058 Durbin-Watson: 0.831
Prob(Omnibus): 0.217 Jarque-Bera (JB): 2.029
Skew: -0.889 Prob(JB): 0.363
Kurtosis: 2.715 Cond. No. 385.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 4.886
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0280
Time: 06:23:27 Log-Likelihood: -70.832
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 71.7819 145.627 0.493 0.631 -245.512 389.076
C(dose)[T.1] 49.3507 16.558 2.980 0.011 13.274 85.428
expression -0.5851 19.510 -0.030 0.977 -43.094 41.924
Omnibus: 2.686 Durbin-Watson: 0.812
Prob(Omnibus): 0.261 Jarque-Bera (JB): 1.852
Skew: -0.839 Prob(JB): 0.396
Kurtosis: 2.615 Cond. No. 144.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 06:23:27 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.041
Model: OLS Adj. R-squared: -0.033
Method: Least Squares F-statistic: 0.5529
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.470
Time: 06:23:27 Log-Likelihood: -74.988
No. Observations: 15 AIC: 154.0
Df Residuals: 13 BIC: 155.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -38.8407 178.477 -0.218 0.831 -424.417 346.736
expression 17.4777 23.505 0.744 0.470 -33.301 68.256
Omnibus: 0.038 Durbin-Watson: 1.559
Prob(Omnibus): 0.981 Jarque-Bera (JB): 0.266
Skew: 0.006 Prob(JB): 0.875
Kurtosis: 2.348 Cond. No. 139.