AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.406 0.531 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.668
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 12.72
Date: Thu, 03 Apr 2025 Prob (F-statistic): 8.64e-05
Time: 22:47:53 Log-Likelihood: -100.44
No. Observations: 23 AIC: 208.9
Df Residuals: 19 BIC: 213.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 58.8133 115.964 0.507 0.618 -183.901 301.528
C(dose)[T.1] 222.6502 205.262 1.085 0.292 -206.968 652.268
expression -0.6252 15.723 -0.040 0.969 -33.533 32.283
expression:C(dose)[T.1] -21.8869 26.966 -0.812 0.427 -78.327 34.553
Omnibus: 0.020 Durbin-Watson: 2.053
Prob(Omnibus): 0.990 Jarque-Bera (JB): 0.226
Skew: 0.010 Prob(JB): 0.893
Kurtosis: 2.515 Cond. No. 438.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.622
Method: Least Squares F-statistic: 19.07
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.32e-05
Time: 22:47:54 Log-Likelihood: -100.83
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 113.6180 93.470 1.216 0.238 -81.358 308.594
C(dose)[T.1] 56.2411 9.807 5.735 0.000 35.785 76.697
expression -8.0659 12.664 -0.637 0.531 -34.483 18.351
Omnibus: 0.038 Durbin-Watson: 1.931
Prob(Omnibus): 0.981 Jarque-Bera (JB): 0.247
Skew: -0.040 Prob(JB): 0.884
Kurtosis: 2.498 Cond. No. 166.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:47:54 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.090
Model: OLS Adj. R-squared: 0.047
Method: Least Squares F-statistic: 2.086
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.163
Time: 22:47:54 Log-Likelihood: -112.02
No. Observations: 23 AIC: 228.0
Df Residuals: 21 BIC: 230.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -114.0166 134.299 -0.849 0.405 -393.306 165.273
expression 25.7021 17.794 1.444 0.163 -11.302 62.706
Omnibus: 3.083 Durbin-Watson: 2.270
Prob(Omnibus): 0.214 Jarque-Bera (JB): 1.682
Skew: 0.378 Prob(JB): 0.431
Kurtosis: 1.911 Cond. No. 150.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.239 0.634 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.468
Model: OLS Adj. R-squared: 0.323
Method: Least Squares F-statistic: 3.225
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0650
Time: 22:47:54 Log-Likelihood: -70.568
No. Observations: 15 AIC: 149.1
Df Residuals: 11 BIC: 152.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 60.9755 188.208 0.324 0.752 -353.268 475.219
C(dose)[T.1] -59.7325 263.142 -0.227 0.825 -638.904 519.439
expression 0.9240 26.898 0.034 0.973 -58.277 60.125
expression:C(dose)[T.1] 15.7675 37.798 0.417 0.685 -67.426 98.961
Omnibus: 1.576 Durbin-Watson: 0.837
Prob(Omnibus): 0.455 Jarque-Bera (JB): 1.147
Skew: -0.634 Prob(JB): 0.563
Kurtosis: 2.524 Cond. No. 309.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.460
Model: OLS Adj. R-squared: 0.369
Method: Least Squares F-statistic: 5.101
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0249
Time: 22:47:54 Log-Likelihood: -70.685
No. Observations: 15 AIC: 147.4
Df Residuals: 12 BIC: 149.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 5.2170 127.856 0.041 0.968 -273.358 283.792
C(dose)[T.1] 49.8278 15.639 3.186 0.008 15.754 83.902
expression 8.9084 18.236 0.489 0.634 -30.824 48.641
Omnibus: 2.043 Durbin-Watson: 0.838
Prob(Omnibus): 0.360 Jarque-Bera (JB): 1.474
Skew: -0.729 Prob(JB): 0.478
Kurtosis: 2.517 Cond. No. 117.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:47:54 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.002
Model: OLS Adj. R-squared: -0.074
Method: Least Squares F-statistic: 0.02997
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.865
Time: 22:47:55 Log-Likelihood: -75.283
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 65.1423 165.083 0.395 0.700 -291.497 421.782
expression 4.1068 23.723 0.173 0.865 -47.143 55.357
Omnibus: 0.489 Durbin-Watson: 1.598
Prob(Omnibus): 0.783 Jarque-Bera (JB): 0.538
Skew: 0.054 Prob(JB): 0.764
Kurtosis: 2.079 Cond. No. 116.