AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.327 0.574 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.666
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 12.64
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.95e-05
Time: 04:45:01 Log-Likelihood: -100.48
No. Observations: 23 AIC: 209.0
Df Residuals: 19 BIC: 213.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 237.9821 190.672 1.248 0.227 -161.099 637.064
C(dose)[T.1] -179.2906 289.551 -0.619 0.543 -785.327 426.746
expression -19.1559 19.865 -0.964 0.347 -60.734 22.422
expression:C(dose)[T.1] 24.1131 29.717 0.811 0.427 -38.085 86.312
Omnibus: 0.360 Durbin-Watson: 1.622
Prob(Omnibus): 0.835 Jarque-Bera (JB): 0.511
Skew: -0.099 Prob(JB): 0.775
Kurtosis: 2.297 Cond. No. 822.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.655
Model: OLS Adj. R-squared: 0.620
Method: Least Squares F-statistic: 18.96
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.41e-05
Time: 04:45:01 Log-Likelihood: -100.88
No. Observations: 23 AIC: 207.8
Df Residuals: 20 BIC: 211.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 134.6116 140.652 0.957 0.350 -158.783 428.006
C(dose)[T.1] 55.5292 9.505 5.842 0.000 35.702 75.357
expression -8.3809 14.648 -0.572 0.574 -38.935 22.173
Omnibus: 1.062 Durbin-Watson: 1.779
Prob(Omnibus): 0.588 Jarque-Bera (JB): 0.807
Skew: 0.070 Prob(JB): 0.668
Kurtosis: 2.093 Cond. No. 319.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:45:02 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.065
Model: OLS Adj. R-squared: 0.021
Method: Least Squares F-statistic: 1.472
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.239
Time: 04:45:02 Log-Likelihood: -112.33
No. Observations: 23 AIC: 228.7
Df Residuals: 21 BIC: 230.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -174.0280 209.278 -0.832 0.415 -609.245 261.189
expression 26.1091 21.522 1.213 0.239 -18.648 70.866
Omnibus: 3.323 Durbin-Watson: 2.504
Prob(Omnibus): 0.190 Jarque-Bera (JB): 1.432
Skew: 0.181 Prob(JB): 0.489
Kurtosis: 1.832 Cond. No. 295.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.023 0.882 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.452
Model: OLS Adj. R-squared: 0.302
Method: Least Squares F-statistic: 3.023
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0755
Time: 04:45:02 Log-Likelihood: -70.790
No. Observations: 15 AIC: 149.6
Df Residuals: 11 BIC: 152.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 61.4264 269.491 0.228 0.824 -531.720 654.573
C(dose)[T.1] -61.5928 538.847 -0.114 0.911 -1247.587 1124.402
expression 0.6411 28.757 0.022 0.983 -62.653 63.936
expression:C(dose)[T.1] 11.7794 57.342 0.205 0.841 -114.429 137.987
Omnibus: 3.179 Durbin-Watson: 0.757
Prob(Omnibus): 0.204 Jarque-Bera (JB): 2.126
Skew: -0.911 Prob(JB): 0.345
Kurtosis: 2.708 Cond. No. 754.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.450
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 4.905
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0277
Time: 04:45:02 Log-Likelihood: -70.819
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 33.6903 223.727 0.151 0.883 -453.769 521.150
C(dose)[T.1] 49.0482 15.755 3.113 0.009 14.720 83.376
expression 3.6038 23.866 0.151 0.882 -48.396 55.603
Omnibus: 2.944 Durbin-Watson: 0.768
Prob(Omnibus): 0.230 Jarque-Bera (JB): 2.000
Skew: -0.878 Prob(JB): 0.368
Kurtosis: 2.659 Cond. No. 271.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:45:02 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.005
Model: OLS Adj. R-squared: -0.071
Method: Least Squares F-statistic: 0.07162
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.793
Time: 04:45:02 Log-Likelihood: -75.259
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 16.3958 288.907 0.057 0.956 -607.749 640.541
expression 8.2344 30.768 0.268 0.793 -58.237 74.706
Omnibus: 0.492 Durbin-Watson: 1.607
Prob(Omnibus): 0.782 Jarque-Bera (JB): 0.536
Skew: 0.001 Prob(JB): 0.765
Kurtosis: 2.074 Cond. No. 271.