AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.106 0.748 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.596
Method: Least Squares F-statistic: 11.81
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000136
Time: 03:32:49 Log-Likelihood: -101.00
No. Observations: 23 AIC: 210.0
Df Residuals: 19 BIC: 214.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 65.9169 41.337 1.595 0.127 -20.602 152.435
C(dose)[T.1] 50.1536 73.373 0.684 0.503 -103.418 203.726
expression -2.0569 7.180 -0.286 0.778 -17.084 12.970
expression:C(dose)[T.1] 0.4623 13.366 0.035 0.973 -27.512 28.437
Omnibus: 0.534 Durbin-Watson: 1.878
Prob(Omnibus): 0.766 Jarque-Bera (JB): 0.604
Skew: 0.102 Prob(JB): 0.739
Kurtosis: 2.233 Cond. No. 112.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 18.65
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.69e-05
Time: 03:32:49 Log-Likelihood: -101.00
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 65.1575 34.140 1.909 0.071 -6.057 136.372
C(dose)[T.1] 52.6716 8.982 5.864 0.000 33.936 71.408
expression -1.9235 5.903 -0.326 0.748 -14.236 10.389
Omnibus: 0.522 Durbin-Watson: 1.878
Prob(Omnibus): 0.770 Jarque-Bera (JB): 0.600
Skew: 0.109 Prob(JB): 0.741
Kurtosis: 2.240 Cond. No. 45.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:32:49 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.051
Model: OLS Adj. R-squared: 0.005
Method: Least Squares F-statistic: 1.121
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.302
Time: 03:32:49 Log-Likelihood: -112.51
No. Observations: 23 AIC: 229.0
Df Residuals: 21 BIC: 231.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 133.8449 51.607 2.594 0.017 26.521 241.169
expression -9.7935 9.251 -1.059 0.302 -29.031 9.444
Omnibus: 1.200 Durbin-Watson: 2.526
Prob(Omnibus): 0.549 Jarque-Bera (JB): 0.997
Skew: 0.286 Prob(JB): 0.607
Kurtosis: 2.155 Cond. No. 42.2

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.009 0.924 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.460
Model: OLS Adj. R-squared: 0.313
Method: Least Squares F-statistic: 3.125
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0699
Time: 03:32:49 Log-Likelihood: -70.677
No. Observations: 15 AIC: 149.4
Df Residuals: 11 BIC: 152.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 2.3930 190.086 0.013 0.990 -415.984 420.770
C(dose)[T.1] 158.5623 231.291 0.686 0.507 -350.506 667.631
expression 9.5071 27.733 0.343 0.738 -51.533 70.547
expression:C(dose)[T.1] -15.6673 33.197 -0.472 0.646 -88.733 57.398
Omnibus: 4.828 Durbin-Watson: 0.854
Prob(Omnibus): 0.089 Jarque-Bera (JB): 2.752
Skew: -1.041 Prob(JB): 0.253
Kurtosis: 3.264 Cond. No. 298.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 4.893
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0279
Time: 03:32:49 Log-Likelihood: -70.827
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 77.1937 101.488 0.761 0.462 -143.931 298.318
C(dose)[T.1] 49.7040 16.584 2.997 0.011 13.571 85.837
expression -1.4275 14.741 -0.097 0.924 -33.544 30.689
Omnibus: 2.867 Durbin-Watson: 0.820
Prob(Omnibus): 0.238 Jarque-Bera (JB): 1.886
Skew: -0.857 Prob(JB): 0.389
Kurtosis: 2.717 Cond. No. 93.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:32:49 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.037
Model: OLS Adj. R-squared: -0.037
Method: Least Squares F-statistic: 0.4979
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.493
Time: 03:32:49 Log-Likelihood: -75.018
No. Observations: 15 AIC: 154.0
Df Residuals: 13 BIC: 155.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 5.5305 125.308 0.044 0.965 -265.181 276.242
expression 12.5365 17.767 0.706 0.493 -25.847 50.920
Omnibus: 0.598 Durbin-Watson: 1.524
Prob(Omnibus): 0.742 Jarque-Bera (JB): 0.591
Skew: 0.120 Prob(JB): 0.744
Kurtosis: 2.058 Cond. No. 90.4