AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.491 0.491 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.681
Model: OLS Adj. R-squared: 0.630
Method: Least Squares F-statistic: 13.49
Date: Thu, 03 Apr 2025 Prob (F-statistic): 5.96e-05
Time: 22:49:22 Log-Likelihood: -99.980
No. Observations: 23 AIC: 208.0
Df Residuals: 19 BIC: 212.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 179.4182 98.114 1.829 0.083 -25.936 384.772
C(dose)[T.1] -135.8769 163.432 -0.831 0.416 -477.944 206.190
expression -18.6624 14.597 -1.279 0.216 -49.214 11.889
expression:C(dose)[T.1] 27.8498 23.755 1.172 0.256 -21.870 77.569
Omnibus: 0.413 Durbin-Watson: 1.992
Prob(Omnibus): 0.813 Jarque-Bera (JB): 0.533
Skew: -0.020 Prob(JB): 0.766
Kurtosis: 2.255 Cond. No. 328.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 19.19
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.22e-05
Time: 22:49:22 Log-Likelihood: -100.78
No. Observations: 23 AIC: 207.6
Df Residuals: 20 BIC: 211.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 108.8656 78.213 1.392 0.179 -54.284 272.015
C(dose)[T.1] 55.4327 9.165 6.048 0.000 36.314 74.552
expression -8.1466 11.623 -0.701 0.491 -32.392 16.099
Omnibus: 0.461 Durbin-Watson: 1.906
Prob(Omnibus): 0.794 Jarque-Bera (JB): 0.562
Skew: 0.070 Prob(JB): 0.755
Kurtosis: 2.247 Cond. No. 127.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:49:22 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.031
Model: OLS Adj. R-squared: -0.015
Method: Least Squares F-statistic: 0.6721
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.422
Time: 22:49:22 Log-Likelihood: -112.74
No. Observations: 23 AIC: 229.5
Df Residuals: 21 BIC: 231.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -21.3022 123.422 -0.173 0.865 -277.973 235.369
expression 14.7857 18.035 0.820 0.422 -22.720 52.291
Omnibus: 1.994 Durbin-Watson: 2.494
Prob(Omnibus): 0.369 Jarque-Bera (JB): 1.115
Skew: 0.147 Prob(JB): 0.573
Kurtosis: 1.962 Cond. No. 121.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.059 0.811 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.454
Model: OLS Adj. R-squared: 0.305
Method: Least Squares F-statistic: 3.052
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0739
Time: 22:49:23 Log-Likelihood: -70.758
No. Observations: 15 AIC: 149.5
Df Residuals: 11 BIC: 152.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 6.0241 196.863 0.031 0.976 -427.267 439.316
C(dose)[T.1] 99.3219 221.701 0.448 0.663 -388.639 587.283
expression 17.9508 57.444 0.312 0.761 -108.483 144.384
expression:C(dose)[T.1] -14.9322 63.526 -0.235 0.818 -154.752 124.887
Omnibus: 2.598 Durbin-Watson: 0.912
Prob(Omnibus): 0.273 Jarque-Bera (JB): 1.815
Skew: -0.826 Prob(JB): 0.404
Kurtosis: 2.585 Cond. No. 163.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.451
Model: OLS Adj. R-squared: 0.360
Method: Least Squares F-statistic: 4.939
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0272
Time: 22:49:23 Log-Likelihood: -70.796
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 47.7906 81.343 0.588 0.568 -129.440 225.021
C(dose)[T.1] 47.3835 17.372 2.728 0.018 9.533 85.234
expression 5.7409 23.542 0.244 0.811 -45.553 57.034
Omnibus: 2.164 Durbin-Watson: 0.872
Prob(Omnibus): 0.339 Jarque-Bera (JB): 1.567
Skew: -0.752 Prob(JB): 0.457
Kurtosis: 2.507 Cond. No. 41.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:49:23 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.111
Model: OLS Adj. R-squared: 0.043
Method: Least Squares F-statistic: 1.630
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.224
Time: 22:49:23 Log-Likelihood: -74.414
No. Observations: 15 AIC: 152.8
Df Residuals: 13 BIC: 154.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -25.5673 93.876 -0.272 0.790 -228.373 177.238
expression 33.2208 26.019 1.277 0.224 -22.990 89.431
Omnibus: 0.956 Durbin-Watson: 1.472
Prob(Omnibus): 0.620 Jarque-Bera (JB): 0.433
Skew: 0.410 Prob(JB): 0.805
Kurtosis: 2.858 Cond. No. 38.1