AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.307 | 0.585 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.659 |
Model: | OLS | Adj. R-squared: | 0.605 |
Method: | Least Squares | F-statistic: | 12.24 |
Date: | Wed, 29 Jan 2025 | Prob (F-statistic): | 0.000109 |
Time: | 00:48:03 | Log-Likelihood: | -100.73 |
No. Observations: | 23 | AIC: | 209.5 |
Df Residuals: | 19 | BIC: | 214.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 203.6183 | 201.086 | 1.013 | 0.324 | -217.260 624.497 |
C(dose)[T.1] | -97.2326 | 290.646 | -0.335 | 0.742 | -705.562 511.097 |
expression | -16.1271 | 21.695 | -0.743 | 0.466 | -61.535 29.281 |
expression:C(dose)[T.1] | 16.2579 | 32.095 | 0.507 | 0.618 | -50.918 83.434 |
Omnibus: | 0.521 | Durbin-Watson: | 1.813 |
Prob(Omnibus): | 0.771 | Jarque-Bera (JB): | 0.595 |
Skew: | 0.092 | Prob(JB): | 0.742 |
Kurtosis: | 2.233 | Cond. No. | 767. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.654 |
Model: | OLS | Adj. R-squared: | 0.620 |
Method: | Least Squares | F-statistic: | 18.93 |
Date: | Wed, 29 Jan 2025 | Prob (F-statistic): | 2.43e-05 |
Time: | 00:48:03 | Log-Likelihood: | -100.89 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 20 | BIC: | 211.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 134.7962 | 145.465 | 0.927 | 0.365 | -168.639 438.231 |
C(dose)[T.1] | 49.8924 | 10.693 | 4.666 | 0.000 | 27.587 72.198 |
expression | -8.6986 | 15.688 | -0.554 | 0.585 | -41.423 24.026 |
Omnibus: | 0.288 | Durbin-Watson: | 1.854 |
Prob(Omnibus): | 0.866 | Jarque-Bera (JB): | 0.466 |
Skew: | 0.135 | Prob(JB): | 0.792 |
Kurtosis: | 2.357 | Cond. No. | 308. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Wed, 29 Jan 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 00:48:03 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.278 |
Model: | OLS | Adj. R-squared: | 0.244 |
Method: | Least Squares | F-statistic: | 8.092 |
Date: | Wed, 29 Jan 2025 | Prob (F-statistic): | 0.00971 |
Time: | 00:48:03 | Log-Likelihood: | -109.36 |
No. Observations: | 23 | AIC: | 222.7 |
Df Residuals: | 21 | BIC: | 225.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 544.5945 | 163.540 | 3.330 | 0.003 | 204.495 884.694 |
expression | -51.2255 | 18.008 | -2.845 | 0.010 | -88.675 -13.776 |
Omnibus: | 1.176 | Durbin-Watson: | 2.557 |
Prob(Omnibus): | 0.555 | Jarque-Bera (JB): | 1.101 |
Skew: | 0.432 | Prob(JB): | 0.577 |
Kurtosis: | 2.367 | Cond. No. | 245. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.229 | 0.289 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.515 |
Model: | OLS | Adj. R-squared: | 0.383 |
Method: | Least Squares | F-statistic: | 3.891 |
Date: | Wed, 29 Jan 2025 | Prob (F-statistic): | 0.0405 |
Time: | 00:48:03 | Log-Likelihood: | -69.876 |
No. Observations: | 15 | AIC: | 147.8 |
Df Residuals: | 11 | BIC: | 150.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 563.3661 | 413.642 | 1.362 | 0.200 | -347.053 1473.785 |
C(dose)[T.1] | -327.0663 | 642.631 | -0.509 | 0.621 | -1741.488 1087.355 |
expression | -55.4417 | 46.225 | -1.199 | 0.256 | -157.181 46.298 |
expression:C(dose)[T.1] | 41.9355 | 72.222 | 0.581 | 0.573 | -117.024 200.895 |
Omnibus: | 1.410 | Durbin-Watson: | 0.986 |
Prob(Omnibus): | 0.494 | Jarque-Bera (JB): | 1.095 |
Skew: | -0.599 | Prob(JB): | 0.578 |
Kurtosis: | 2.437 | Cond. No. | 962. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.500 |
Model: | OLS | Adj. R-squared: | 0.417 |
Method: | Least Squares | F-statistic: | 5.999 |
Date: | Wed, 29 Jan 2025 | Prob (F-statistic): | 0.0156 |
Time: | 00:48:03 | Log-Likelihood: | -70.102 |
No. Observations: | 15 | AIC: | 146.2 |
Df Residuals: | 12 | BIC: | 148.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 409.6988 | 308.997 | 1.326 | 0.210 | -263.547 1082.945 |
C(dose)[T.1] | 45.9655 | 15.272 | 3.010 | 0.011 | 12.691 79.240 |
expression | -38.2630 | 34.522 | -1.108 | 0.289 | -113.479 36.953 |
Omnibus: | 1.728 | Durbin-Watson: | 0.898 |
Prob(Omnibus): | 0.421 | Jarque-Bera (JB): | 1.318 |
Skew: | -0.559 | Prob(JB): | 0.517 |
Kurtosis: | 2.072 | Cond. No. | 373. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Wed, 29 Jan 2025 | Prob (F-statistic): | 0.00629 |
Time: | 00:48:03 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.122 |
Model: | OLS | Adj. R-squared: | 0.055 |
Method: | Least Squares | F-statistic: | 1.814 |
Date: | Wed, 29 Jan 2025 | Prob (F-statistic): | 0.201 |
Time: | 00:48:03 | Log-Likelihood: | -74.320 |
No. Observations: | 15 | AIC: | 152.6 |
Df Residuals: | 13 | BIC: | 154.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 610.7277 | 383.983 | 1.591 | 0.136 | -218.817 1440.272 |
expression | -58.0956 | 43.130 | -1.347 | 0.201 | -151.272 35.081 |
Omnibus: | 5.524 | Durbin-Watson: | 1.313 |
Prob(Omnibus): | 0.063 | Jarque-Bera (JB): | 1.791 |
Skew: | 0.409 | Prob(JB): | 0.408 |
Kurtosis: | 1.518 | Cond. No. | 364. |