AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.058 0.812 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.713
Model: OLS Adj. R-squared: 0.668
Method: Least Squares F-statistic: 15.75
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.18e-05
Time: 22:53:04 Log-Likelihood: -98.740
No. Observations: 23 AIC: 205.5
Df Residuals: 19 BIC: 210.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -12.5093 45.116 -0.277 0.785 -106.939 81.920
C(dose)[T.1] 183.9021 63.844 2.880 0.010 50.275 317.529
expression 12.4357 8.344 1.490 0.153 -5.028 29.899
expression:C(dose)[T.1] -27.0983 13.245 -2.046 0.055 -54.819 0.623
Omnibus: 0.225 Durbin-Watson: 2.351
Prob(Omnibus): 0.894 Jarque-Bera (JB): 0.393
Skew: -0.177 Prob(JB): 0.822
Kurtosis: 2.466 Cond. No. 100.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 18.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.75e-05
Time: 22:53:04 Log-Likelihood: -101.03
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 45.1887 37.918 1.192 0.247 -33.907 124.285
C(dose)[T.1] 55.0362 11.243 4.895 0.000 31.584 78.489
expression 1.6812 6.977 0.241 0.812 -12.872 16.235
Omnibus: 0.415 Durbin-Watson: 1.956
Prob(Omnibus): 0.813 Jarque-Bera (JB): 0.534
Skew: 0.017 Prob(JB): 0.766
Kurtosis: 2.254 Cond. No. 45.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:53:05 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.231
Model: OLS Adj. R-squared: 0.194
Method: Least Squares F-statistic: 6.302
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0203
Time: 22:53:05 Log-Likelihood: -110.09
No. Observations: 23 AIC: 224.2
Df Residuals: 21 BIC: 226.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 176.0722 38.902 4.526 0.000 95.171 256.973
expression -19.7380 7.863 -2.510 0.020 -36.090 -3.386
Omnibus: 1.036 Durbin-Watson: 1.831
Prob(Omnibus): 0.596 Jarque-Bera (JB): 0.819
Skew: 0.127 Prob(JB): 0.664
Kurtosis: 2.111 Cond. No. 31.6

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.270 0.282 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.509
Model: OLS Adj. R-squared: 0.375
Method: Least Squares F-statistic: 3.799
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0431
Time: 22:53:05 Log-Likelihood: -69.967
No. Observations: 15 AIC: 147.9
Df Residuals: 11 BIC: 150.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 246.9592 203.159 1.216 0.250 -200.190 694.109
C(dose)[T.1] -45.0000 233.076 -0.193 0.850 -557.996 467.996
expression -30.7766 34.773 -0.885 0.395 -107.311 45.758
expression:C(dose)[T.1] 16.1572 39.861 0.405 0.693 -71.576 103.891
Omnibus: 2.376 Durbin-Watson: 0.882
Prob(Omnibus): 0.305 Jarque-Bera (JB): 1.118
Skew: -0.667 Prob(JB): 0.572
Kurtosis: 3.105 Cond. No. 271.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.502
Model: OLS Adj. R-squared: 0.418
Method: Least Squares F-statistic: 6.037
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0153
Time: 22:53:05 Log-Likelihood: -70.078
No. Observations: 15 AIC: 146.2
Df Residuals: 12 BIC: 148.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 175.2341 96.272 1.820 0.094 -34.524 384.992
C(dose)[T.1] 49.2653 14.967 3.291 0.006 16.654 81.877
expression -18.4809 16.397 -1.127 0.282 -54.207 17.245
Omnibus: 2.892 Durbin-Watson: 0.963
Prob(Omnibus): 0.235 Jarque-Bera (JB): 1.328
Skew: -0.718 Prob(JB): 0.515
Kurtosis: 3.248 Cond. No. 78.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:53:05 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.052
Model: OLS Adj. R-squared: -0.021
Method: Least Squares F-statistic: 0.7061
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.416
Time: 22:53:05 Log-Likelihood: -74.903
No. Observations: 15 AIC: 153.8
Df Residuals: 13 BIC: 155.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 200.2232 127.193 1.574 0.139 -74.561 475.007
expression -18.2606 21.731 -0.840 0.416 -65.207 28.686
Omnibus: 1.054 Durbin-Watson: 1.741
Prob(Omnibus): 0.590 Jarque-Bera (JB): 0.760
Skew: 0.169 Prob(JB): 0.684
Kurtosis: 1.950 Cond. No. 77.4