AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.604 0.072 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.713
Model: OLS Adj. R-squared: 0.668
Method: Least Squares F-statistic: 15.75
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.19e-05
Time: 04:18:07 Log-Likelihood: -98.743
No. Observations: 23 AIC: 205.5
Df Residuals: 19 BIC: 210.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 82.5154 44.300 1.863 0.078 -10.206 175.237
C(dose)[T.1] 105.3671 60.678 1.737 0.099 -21.633 232.367
expression -6.0798 9.438 -0.644 0.527 -25.833 13.674
expression:C(dose)[T.1] -10.6137 12.721 -0.834 0.414 -37.238 16.011
Omnibus: 2.584 Durbin-Watson: 2.044
Prob(Omnibus): 0.275 Jarque-Bera (JB): 1.335
Skew: 0.230 Prob(JB): 0.513
Kurtosis: 1.913 Cond. No. 98.6

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.703
Model: OLS Adj. R-squared: 0.673
Method: Least Squares F-statistic: 23.63
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.40e-06
Time: 04:18:07 Log-Likelihood: -99.157
No. Observations: 23 AIC: 204.3
Df Residuals: 20 BIC: 207.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 109.7167 29.766 3.686 0.001 47.627 171.807
C(dose)[T.1] 55.2039 8.132 6.788 0.000 38.240 72.167
expression -11.9222 6.280 -1.899 0.072 -25.021 1.177
Omnibus: 4.358 Durbin-Watson: 1.967
Prob(Omnibus): 0.113 Jarque-Bera (JB): 1.584
Skew: 0.155 Prob(JB): 0.453
Kurtosis: 1.752 Cond. No. 36.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:18:07 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.018
Model: OLS Adj. R-squared: -0.029
Method: Least Squares F-statistic: 0.3746
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.547
Time: 04:18:07 Log-Likelihood: -112.90
No. Observations: 23 AIC: 229.8
Df Residuals: 21 BIC: 232.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 111.7354 52.799 2.116 0.046 1.935 221.536
expression -6.7680 11.058 -0.612 0.547 -29.764 16.228
Omnibus: 2.998 Durbin-Watson: 2.546
Prob(Omnibus): 0.223 Jarque-Bera (JB): 1.423
Skew: 0.230 Prob(JB): 0.491
Kurtosis: 1.871 Cond. No. 36.8

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.516 0.242 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.524
Model: OLS Adj. R-squared: 0.394
Method: Least Squares F-statistic: 4.031
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0369
Time: 04:18:07 Log-Likelihood: -69.738
No. Observations: 15 AIC: 147.5
Df Residuals: 11 BIC: 150.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 58.6093 174.547 0.336 0.743 -325.567 442.785
C(dose)[T.1] -37.4881 189.363 -0.198 0.847 -454.274 379.297
expression 1.4088 27.824 0.051 0.961 -59.832 62.650
expression:C(dose)[T.1] 17.1392 31.200 0.549 0.594 -51.532 85.810
Omnibus: 1.374 Durbin-Watson: 0.872
Prob(Omnibus): 0.503 Jarque-Bera (JB): 1.008
Skew: -0.384 Prob(JB): 0.604
Kurtosis: 1.988 Cond. No. 217.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.511
Model: OLS Adj. R-squared: 0.429
Method: Least Squares F-statistic: 6.260
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0137
Time: 04:18:07 Log-Likelihood: -69.941
No. Observations: 15 AIC: 145.9
Df Residuals: 12 BIC: 148.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -26.7259 77.244 -0.346 0.735 -195.025 141.573
C(dose)[T.1] 65.9106 20.107 3.278 0.007 22.102 109.720
expression 15.0398 12.217 1.231 0.242 -11.578 41.658
Omnibus: 2.522 Durbin-Watson: 0.712
Prob(Omnibus): 0.283 Jarque-Bera (JB): 1.358
Skew: -0.428 Prob(JB): 0.507
Kurtosis: 1.800 Cond. No. 62.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:18:07 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.072
Model: OLS Adj. R-squared: 0.001
Method: Least Squares F-statistic: 1.014
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.332
Time: 04:18:07 Log-Likelihood: -74.737
No. Observations: 15 AIC: 153.5
Df Residuals: 13 BIC: 154.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 161.6827 68.260 2.369 0.034 14.216 309.149
expression -12.0008 11.919 -1.007 0.332 -37.751 13.749
Omnibus: 0.100 Durbin-Watson: 1.376
Prob(Omnibus): 0.951 Jarque-Bera (JB): 0.320
Skew: -0.083 Prob(JB): 0.852
Kurtosis: 2.305 Cond. No. 41.1