AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.930 | 0.180 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.684 |
Model: | OLS | Adj. R-squared: | 0.634 |
Method: | Least Squares | F-statistic: | 13.68 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 5.46e-05 |
Time: | 21:46:23 | Log-Likelihood: | -99.873 |
No. Observations: | 23 | AIC: | 207.7 |
Df Residuals: | 19 | BIC: | 212.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 296.3400 | 331.737 | 0.893 | 0.383 | -397.993 990.673 |
C(dose)[T.1] | 296.0908 | 512.792 | 0.577 | 0.570 | -777.195 1369.376 |
expression | -22.8874 | 31.352 | -0.730 | 0.474 | -88.509 42.734 |
expression:C(dose)[T.1] | -22.4059 | 48.133 | -0.465 | 0.647 | -123.150 78.338 |
Omnibus: | 0.098 | Durbin-Watson: | 1.950 |
Prob(Omnibus): | 0.952 | Jarque-Bera (JB): | 0.319 |
Skew: | 0.051 | Prob(JB): | 0.852 |
Kurtosis: | 2.432 | Cond. No. | 1.62e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.680 |
Model: | OLS | Adj. R-squared: | 0.648 |
Method: | Least Squares | F-statistic: | 21.24 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 1.13e-05 |
Time: | 21:46:23 | Log-Likelihood: | -100.00 |
No. Observations: | 23 | AIC: | 206.0 |
Df Residuals: | 20 | BIC: | 209.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 396.9090 | 246.761 | 1.608 | 0.123 | -117.825 911.643 |
C(dose)[T.1] | 57.4256 | 8.877 | 6.469 | 0.000 | 38.908 75.943 |
expression | -32.3937 | 23.319 | -1.389 | 0.180 | -81.035 16.248 |
Omnibus: | 0.361 | Durbin-Watson: | 2.025 |
Prob(Omnibus): | 0.835 | Jarque-Bera (JB): | 0.507 |
Skew: | 0.052 | Prob(JB): | 0.776 |
Kurtosis: | 2.280 | Cond. No. | 634. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 21:46:23 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.010 |
Model: | OLS | Adj. R-squared: | -0.037 |
Method: | Least Squares | F-statistic: | 0.2177 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.646 |
Time: | 21:46:23 | Log-Likelihood: | -112.99 |
No. Observations: | 23 | AIC: | 230.0 |
Df Residuals: | 21 | BIC: | 232.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -107.7188 | 401.755 | -0.268 | 0.791 | -943.215 727.777 |
expression | 17.6168 | 37.754 | 0.467 | 0.646 | -60.898 96.131 |
Omnibus: | 3.402 | Durbin-Watson: | 2.427 |
Prob(Omnibus): | 0.183 | Jarque-Bera (JB): | 1.582 |
Skew: | 0.285 | Prob(JB): | 0.454 |
Kurtosis: | 1.848 | Cond. No. | 601. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.635 | 0.441 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.551 |
Model: | OLS | Adj. R-squared: | 0.428 |
Method: | Least Squares | F-statistic: | 4.495 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0272 |
Time: | 21:46:23 | Log-Likelihood: | -69.299 |
No. Observations: | 15 | AIC: | 146.6 |
Df Residuals: | 11 | BIC: | 149.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -268.0836 | 419.482 | -0.639 | 0.536 | -1191.357 655.190 |
C(dose)[T.1] | 679.4249 | 472.081 | 1.439 | 0.178 | -359.619 1718.469 |
expression | 36.9946 | 46.238 | 0.800 | 0.441 | -64.774 138.764 |
expression:C(dose)[T.1] | -70.7096 | 52.444 | -1.348 | 0.205 | -186.137 44.718 |
Omnibus: | 1.216 | Durbin-Watson: | 0.993 |
Prob(Omnibus): | 0.544 | Jarque-Bera (JB): | 1.007 |
Skew: | -0.451 | Prob(JB): | 0.604 |
Kurtosis: | 2.108 | Cond. No. | 861. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.476 |
Model: | OLS | Adj. R-squared: | 0.389 |
Method: | Least Squares | F-statistic: | 5.461 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0206 |
Time: | 21:46:23 | Log-Likelihood: | -70.446 |
No. Observations: | 15 | AIC: | 146.9 |
Df Residuals: | 12 | BIC: | 149.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 230.4120 | 204.812 | 1.125 | 0.283 | -215.834 676.658 |
C(dose)[T.1] | 43.3051 | 17.027 | 2.543 | 0.026 | 6.206 80.404 |
expression | -17.9711 | 22.549 | -0.797 | 0.441 | -67.102 31.160 |
Omnibus: | 2.195 | Durbin-Watson: | 0.665 |
Prob(Omnibus): | 0.334 | Jarque-Bera (JB): | 1.610 |
Skew: | -0.646 | Prob(JB): | 0.447 |
Kurtosis: | 2.048 | Cond. No. | 242. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.00629 |
Time: | 21:46:23 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.194 |
Model: | OLS | Adj. R-squared: | 0.132 |
Method: | Least Squares | F-statistic: | 3.135 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.100 |
Time: | 21:46:23 | Log-Likelihood: | -73.680 |
No. Observations: | 15 | AIC: | 151.4 |
Df Residuals: | 13 | BIC: | 152.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 474.9559 | 215.542 | 2.204 | 0.046 | 9.306 940.606 |
expression | -42.8686 | 24.212 | -1.771 | 0.100 | -95.175 9.438 |
Omnibus: | 0.034 | Durbin-Watson: | 1.312 |
Prob(Omnibus): | 0.983 | Jarque-Bera (JB): | 0.196 |
Skew: | -0.091 | Prob(JB): | 0.906 |
Kurtosis: | 2.470 | Cond. No. | 213. |