AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.262 0.614 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.654
Model: OLS Adj. R-squared: 0.599
Method: Least Squares F-statistic: 11.95
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000127
Time: 03:32:17 Log-Likelihood: -100.91
No. Observations: 23 AIC: 209.8
Df Residuals: 19 BIC: 214.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -18.9037 218.086 -0.087 0.932 -475.363 437.556
C(dose)[T.1] 54.9312 291.732 0.188 0.853 -555.672 665.534
expression 9.1994 27.430 0.335 0.741 -48.212 66.611
expression:C(dose)[T.1] -0.2743 36.558 -0.008 0.994 -76.791 76.243
Omnibus: 0.973 Durbin-Watson: 1.767
Prob(Omnibus): 0.615 Jarque-Bera (JB): 0.806
Skew: 0.147 Prob(JB): 0.668
Kurtosis: 2.131 Cond. No. 706.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.654
Model: OLS Adj. R-squared: 0.619
Method: Least Squares F-statistic: 18.87
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.49e-05
Time: 03:32:17 Log-Likelihood: -100.91
No. Observations: 23 AIC: 207.8
Df Residuals: 20 BIC: 211.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -17.6765 140.596 -0.126 0.901 -310.954 275.601
C(dose)[T.1] 52.7433 8.790 6.000 0.000 34.408 71.079
expression 9.0450 17.674 0.512 0.614 -27.823 45.913
Omnibus: 0.979 Durbin-Watson: 1.769
Prob(Omnibus): 0.613 Jarque-Bera (JB): 0.809
Skew: 0.149 Prob(JB): 0.667
Kurtosis: 2.131 Cond. No. 262.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:32:17 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.030
Model: OLS Adj. R-squared: -0.016
Method: Least Squares F-statistic: 0.6488
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.430
Time: 03:32:17 Log-Likelihood: -112.75
No. Observations: 23 AIC: 229.5
Df Residuals: 21 BIC: 231.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -104.1531 228.393 -0.456 0.653 -579.123 370.817
expression 23.0448 28.611 0.805 0.430 -36.455 82.545
Omnibus: 1.983 Durbin-Watson: 2.447
Prob(Omnibus): 0.371 Jarque-Bera (JB): 1.345
Skew: 0.348 Prob(JB): 0.510
Kurtosis: 2.042 Cond. No. 261.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.016 0.903 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.450
Model: OLS Adj. R-squared: 0.299
Method: Least Squares F-statistic: 2.994
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0772
Time: 03:32:17 Log-Likelihood: -70.822
No. Observations: 15 AIC: 149.6
Df Residuals: 11 BIC: 152.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 87.0318 350.199 0.249 0.808 -683.750 857.814
C(dose)[T.1] 66.6399 484.060 0.138 0.893 -998.768 1132.048
expression -2.3644 42.213 -0.056 0.956 -95.275 90.547
expression:C(dose)[T.1] -2.0143 57.795 -0.035 0.973 -129.220 125.191
Omnibus: 3.159 Durbin-Watson: 0.798
Prob(Omnibus): 0.206 Jarque-Bera (JB): 2.061
Skew: -0.900 Prob(JB): 0.357
Kurtosis: 2.756 Cond. No. 678.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 4.899
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0278
Time: 03:32:17 Log-Likelihood: -70.823
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 95.9411 229.176 0.419 0.683 -403.390 595.272
C(dose)[T.1] 49.7801 16.413 3.033 0.010 14.020 85.540
expression -3.4390 27.607 -0.125 0.903 -63.589 56.711
Omnibus: 3.019 Durbin-Watson: 0.796
Prob(Omnibus): 0.221 Jarque-Bera (JB): 1.992
Skew: -0.882 Prob(JB): 0.369
Kurtosis: 2.722 Cond. No. 249.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:32:17 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.027
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.3669
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.555
Time: 03:32:17 Log-Likelihood: -75.091
No. Observations: 15 AIC: 154.2
Df Residuals: 13 BIC: 155.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -77.8652 283.361 -0.275 0.788 -690.029 534.298
expression 20.4654 33.786 0.606 0.555 -52.526 93.457
Omnibus: 0.180 Durbin-Watson: 1.477
Prob(Omnibus): 0.914 Jarque-Bera (JB): 0.379
Skew: 0.120 Prob(JB): 0.827
Kurtosis: 2.259 Cond. No. 241.