AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.354 | 0.050 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.725 |
Model: | OLS | Adj. R-squared: | 0.681 |
Method: | Least Squares | F-statistic: | 16.68 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 1.49e-05 |
Time: | 18:40:10 | Log-Likelihood: | -98.269 |
No. Observations: | 23 | AIC: | 204.5 |
Df Residuals: | 19 | BIC: | 209.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 260.0232 | 574.275 | 0.453 | 0.656 | -941.948 1461.994 |
C(dose)[T.1] | 704.2103 | 688.369 | 1.023 | 0.319 | -736.562 2144.982 |
expression | -19.8906 | 55.497 | -0.358 | 0.724 | -136.048 96.267 |
expression:C(dose)[T.1] | -62.8557 | 66.510 | -0.945 | 0.356 | -202.064 76.352 |
Omnibus: | 0.460 | Durbin-Watson: | 1.898 |
Prob(Omnibus): | 0.794 | Jarque-Bera (JB): | 0.577 |
Skew: | 0.150 | Prob(JB): | 0.749 |
Kurtosis: | 2.285 | Cond. No. | 2.56e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.712 |
Model: | OLS | Adj. R-squared: | 0.683 |
Method: | Least Squares | F-statistic: | 24.70 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 3.95e-06 |
Time: | 18:40:10 | Log-Likelihood: | -98.797 |
No. Observations: | 23 | AIC: | 203.6 |
Df Residuals: | 20 | BIC: | 207.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 712.8560 | 315.690 | 2.258 | 0.035 | 54.339 1371.373 |
C(dose)[T.1] | 53.7098 | 7.949 | 6.757 | 0.000 | 37.128 70.292 |
expression | -63.6539 | 30.505 | -2.087 | 0.050 | -127.286 -0.022 |
Omnibus: | 1.967 | Durbin-Watson: | 2.064 |
Prob(Omnibus): | 0.374 | Jarque-Bera (JB): | 1.085 |
Skew: | 0.110 | Prob(JB): | 0.581 |
Kurtosis: | 1.959 | Cond. No. | 832. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 18:40:10 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.054 |
Model: | OLS | Adj. R-squared: | 0.009 |
Method: | Least Squares | F-statistic: | 1.198 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.286 |
Time: | 18:40:10 | Log-Likelihood: | -112.47 |
No. Observations: | 23 | AIC: | 228.9 |
Df Residuals: | 21 | BIC: | 231.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 690.6097 | 558.146 | 1.237 | 0.230 | -470.118 1851.338 |
expression | -59.0227 | 53.922 | -1.095 | 0.286 | -171.160 53.115 |
Omnibus: | 3.165 | Durbin-Watson: | 2.508 |
Prob(Omnibus): | 0.205 | Jarque-Bera (JB): | 1.353 |
Skew: | 0.122 | Prob(JB): | 0.508 |
Kurtosis: | 1.837 | Cond. No. | 831. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.290 | 0.600 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.462 |
Model: | OLS | Adj. R-squared: | 0.316 |
Method: | Least Squares | F-statistic: | 3.152 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0686 |
Time: | 18:40:10 | Log-Likelihood: | -70.647 |
No. Observations: | 15 | AIC: | 149.3 |
Df Residuals: | 11 | BIC: | 152.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -149.1310 | 718.256 | -0.208 | 0.839 | -1730.001 1431.739 |
C(dose)[T.1] | -56.4758 | 1037.800 | -0.054 | 0.958 | -2340.659 2227.707 |
expression | 21.3493 | 70.799 | 0.302 | 0.769 | -134.478 177.176 |
expression:C(dose)[T.1] | 9.9385 | 101.497 | 0.098 | 0.924 | -213.455 233.332 |
Omnibus: | 1.945 | Durbin-Watson: | 0.888 |
Prob(Omnibus): | 0.378 | Jarque-Bera (JB): | 1.522 |
Skew: | -0.690 | Prob(JB): | 0.467 |
Kurtosis: | 2.272 | Cond. No. | 1.75e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.462 |
Model: | OLS | Adj. R-squared: | 0.372 |
Method: | Least Squares | F-statistic: | 5.148 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0243 |
Time: | 18:40:10 | Log-Likelihood: | -70.654 |
No. Observations: | 15 | AIC: | 147.3 |
Df Residuals: | 12 | BIC: | 149.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -198.1834 | 493.027 | -0.402 | 0.695 | -1272.397 876.030 |
C(dose)[T.1] | 45.1292 | 17.287 | 2.611 | 0.023 | 7.464 82.795 |
expression | 26.1850 | 48.592 | 0.539 | 0.600 | -79.687 132.057 |
Omnibus: | 1.977 | Durbin-Watson: | 0.865 |
Prob(Omnibus): | 0.372 | Jarque-Bera (JB): | 1.542 |
Skew: | -0.700 | Prob(JB): | 0.463 |
Kurtosis: | 2.286 | Cond. No. | 657. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.00629 |
Time: | 18:40:10 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.156 |
Model: | OLS | Adj. R-squared: | 0.091 |
Method: | Least Squares | F-statistic: | 2.405 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.145 |
Time: | 18:40:11 | Log-Likelihood: | -74.027 |
No. Observations: | 15 | AIC: | 152.1 |
Df Residuals: | 13 | BIC: | 153.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -740.4819 | 537.912 | -1.377 | 0.192 | -1902.570 421.607 |
expression | 81.5674 | 52.592 | 1.551 | 0.145 | -32.051 195.185 |
Omnibus: | 1.505 | Durbin-Watson: | 1.724 |
Prob(Omnibus): | 0.471 | Jarque-Bera (JB): | 0.874 |
Skew: | 0.155 | Prob(JB): | 0.646 |
Kurtosis: | 1.859 | Cond. No. | 595. |