AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.069 | 0.795 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.682 |
Model: | OLS | Adj. R-squared: | 0.631 |
Method: | Least Squares | F-statistic: | 13.56 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 5.79e-05 |
Time: | 22:46:36 | Log-Likelihood: | -99.945 |
No. Observations: | 23 | AIC: | 207.9 |
Df Residuals: | 19 | BIC: | 212.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 128.5873 | 98.457 | 1.306 | 0.207 | -77.486 334.661 |
C(dose)[T.1] | -137.9878 | 140.491 | -0.982 | 0.338 | -432.039 156.064 |
expression | -11.5500 | 15.261 | -0.757 | 0.458 | -43.492 20.392 |
expression:C(dose)[T.1] | 30.0037 | 21.956 | 1.367 | 0.188 | -15.950 75.957 |
Omnibus: | 0.451 | Durbin-Watson: | 1.566 |
Prob(Omnibus): | 0.798 | Jarque-Bera (JB): | 0.355 |
Skew: | -0.273 | Prob(JB): | 0.838 |
Kurtosis: | 2.730 | Cond. No. | 277. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.59 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.74e-05 |
Time: | 22:46:36 | Log-Likelihood: | -101.02 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 35.2325 | 72.424 | 0.486 | 0.632 | -115.840 186.305 |
C(dose)[T.1] | 53.6392 | 8.830 | 6.075 | 0.000 | 35.221 72.058 |
expression | 2.9467 | 11.207 | 0.263 | 0.795 | -20.431 26.324 |
Omnibus: | 0.107 | Durbin-Watson: | 1.926 |
Prob(Omnibus): | 0.948 | Jarque-Bera (JB): | 0.332 |
Skew: | 0.013 | Prob(JB): | 0.847 |
Kurtosis: | 2.412 | Cond. No. | 109. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:46:37 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.005 |
Model: | OLS | Adj. R-squared: | -0.042 |
Method: | Least Squares | F-statistic: | 0.1044 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.750 |
Time: | 22:46:37 | Log-Likelihood: | -113.05 |
No. Observations: | 23 | AIC: | 230.1 |
Df Residuals: | 21 | BIC: | 232.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 117.4948 | 117.115 | 1.003 | 0.327 | -126.058 361.048 |
expression | -5.9113 | 18.291 | -0.323 | 0.750 | -43.950 32.127 |
Omnibus: | 2.888 | Durbin-Watson: | 2.486 |
Prob(Omnibus): | 0.236 | Jarque-Bera (JB): | 1.613 |
Skew: | 0.365 | Prob(JB): | 0.446 |
Kurtosis: | 1.927 | Cond. No. | 107. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.191 | 0.670 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.546 |
Model: | OLS | Adj. R-squared: | 0.423 |
Method: | Least Squares | F-statistic: | 4.416 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0286 |
Time: | 22:46:37 | Log-Likelihood: | -69.372 |
No. Observations: | 15 | AIC: | 146.7 |
Df Residuals: | 11 | BIC: | 149.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -205.6078 | 180.625 | -1.138 | 0.279 | -603.162 191.946 |
C(dose)[T.1] | 347.5911 | 203.755 | 1.706 | 0.116 | -100.871 796.054 |
expression | 40.7236 | 26.891 | 1.514 | 0.158 | -18.464 99.911 |
expression:C(dose)[T.1] | -44.4973 | 30.294 | -1.469 | 0.170 | -111.174 22.180 |
Omnibus: | 2.569 | Durbin-Watson: | 1.002 |
Prob(Omnibus): | 0.277 | Jarque-Bera (JB): | 1.325 |
Skew: | -0.728 | Prob(JB): | 0.516 |
Kurtosis: | 3.036 | Cond. No. | 285. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.457 |
Model: | OLS | Adj. R-squared: | 0.367 |
Method: | Least Squares | F-statistic: | 5.058 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0255 |
Time: | 22:46:37 | Log-Likelihood: | -70.715 |
No. Observations: | 15 | AIC: | 147.4 |
Df Residuals: | 12 | BIC: | 149.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 29.4720 | 87.678 | 0.336 | 0.743 | -161.562 220.506 |
C(dose)[T.1] | 49.1105 | 15.617 | 3.145 | 0.008 | 15.083 83.138 |
expression | 5.6613 | 12.966 | 0.437 | 0.670 | -22.590 33.912 |
Omnibus: | 3.104 | Durbin-Watson: | 0.782 |
Prob(Omnibus): | 0.212 | Jarque-Bera (JB): | 2.101 |
Skew: | -0.903 | Prob(JB): | 0.350 |
Kurtosis: | 2.677 | Cond. No. | 77.7 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:46:37 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.010 |
Model: | OLS | Adj. R-squared: | -0.066 |
Method: | Least Squares | F-statistic: | 0.1347 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.719 |
Time: | 22:46:37 | Log-Likelihood: | -75.223 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 52.2135 | 113.383 | 0.461 | 0.653 | -192.735 297.162 |
expression | 6.1753 | 16.823 | 0.367 | 0.719 | -30.169 42.520 |
Omnibus: | 1.384 | Durbin-Watson: | 1.675 |
Prob(Omnibus): | 0.501 | Jarque-Bera (JB): | 0.830 |
Skew: | 0.121 | Prob(JB): | 0.660 |
Kurtosis: | 1.873 | Cond. No. | 77.2 |