AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.069 0.795 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.682
Model: OLS Adj. R-squared: 0.631
Method: Least Squares F-statistic: 13.56
Date: Thu, 03 Apr 2025 Prob (F-statistic): 5.79e-05
Time: 22:46:36 Log-Likelihood: -99.945
No. Observations: 23 AIC: 207.9
Df Residuals: 19 BIC: 212.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 128.5873 98.457 1.306 0.207 -77.486 334.661
C(dose)[T.1] -137.9878 140.491 -0.982 0.338 -432.039 156.064
expression -11.5500 15.261 -0.757 0.458 -43.492 20.392
expression:C(dose)[T.1] 30.0037 21.956 1.367 0.188 -15.950 75.957
Omnibus: 0.451 Durbin-Watson: 1.566
Prob(Omnibus): 0.798 Jarque-Bera (JB): 0.355
Skew: -0.273 Prob(JB): 0.838
Kurtosis: 2.730 Cond. No. 277.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 18.59
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.74e-05
Time: 22:46:36 Log-Likelihood: -101.02
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 35.2325 72.424 0.486 0.632 -115.840 186.305
C(dose)[T.1] 53.6392 8.830 6.075 0.000 35.221 72.058
expression 2.9467 11.207 0.263 0.795 -20.431 26.324
Omnibus: 0.107 Durbin-Watson: 1.926
Prob(Omnibus): 0.948 Jarque-Bera (JB): 0.332
Skew: 0.013 Prob(JB): 0.847
Kurtosis: 2.412 Cond. No. 109.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:46:37 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.005
Model: OLS Adj. R-squared: -0.042
Method: Least Squares F-statistic: 0.1044
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.750
Time: 22:46:37 Log-Likelihood: -113.05
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 117.4948 117.115 1.003 0.327 -126.058 361.048
expression -5.9113 18.291 -0.323 0.750 -43.950 32.127
Omnibus: 2.888 Durbin-Watson: 2.486
Prob(Omnibus): 0.236 Jarque-Bera (JB): 1.613
Skew: 0.365 Prob(JB): 0.446
Kurtosis: 1.927 Cond. No. 107.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.191 0.670 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.546
Model: OLS Adj. R-squared: 0.423
Method: Least Squares F-statistic: 4.416
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0286
Time: 22:46:37 Log-Likelihood: -69.372
No. Observations: 15 AIC: 146.7
Df Residuals: 11 BIC: 149.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -205.6078 180.625 -1.138 0.279 -603.162 191.946
C(dose)[T.1] 347.5911 203.755 1.706 0.116 -100.871 796.054
expression 40.7236 26.891 1.514 0.158 -18.464 99.911
expression:C(dose)[T.1] -44.4973 30.294 -1.469 0.170 -111.174 22.180
Omnibus: 2.569 Durbin-Watson: 1.002
Prob(Omnibus): 0.277 Jarque-Bera (JB): 1.325
Skew: -0.728 Prob(JB): 0.516
Kurtosis: 3.036 Cond. No. 285.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.457
Model: OLS Adj. R-squared: 0.367
Method: Least Squares F-statistic: 5.058
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0255
Time: 22:46:37 Log-Likelihood: -70.715
No. Observations: 15 AIC: 147.4
Df Residuals: 12 BIC: 149.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 29.4720 87.678 0.336 0.743 -161.562 220.506
C(dose)[T.1] 49.1105 15.617 3.145 0.008 15.083 83.138
expression 5.6613 12.966 0.437 0.670 -22.590 33.912
Omnibus: 3.104 Durbin-Watson: 0.782
Prob(Omnibus): 0.212 Jarque-Bera (JB): 2.101
Skew: -0.903 Prob(JB): 0.350
Kurtosis: 2.677 Cond. No. 77.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:46:37 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.010
Model: OLS Adj. R-squared: -0.066
Method: Least Squares F-statistic: 0.1347
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.719
Time: 22:46:37 Log-Likelihood: -75.223
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 52.2135 113.383 0.461 0.653 -192.735 297.162
expression 6.1753 16.823 0.367 0.719 -30.169 42.520
Omnibus: 1.384 Durbin-Watson: 1.675
Prob(Omnibus): 0.501 Jarque-Bera (JB): 0.830
Skew: 0.121 Prob(JB): 0.660
Kurtosis: 1.873 Cond. No. 77.2