AIM Score vs. Gene Expression 
		Full X range:
		
 
		 
			
		
		Auto X range:
		
 
		
		Group Comparisons: Boxplots
		 
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 4.039 | 0.058 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.728 | 
  | Model: | OLS | Adj. R-squared: | 0.685 | 
  | Method: | Least Squares | F-statistic: | 16.95 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 1.33e-05 | 
  | Time: | 08:31:36 | Log-Likelihood: | -98.131 | 
  | No. Observations: | 23 | AIC: | 204.3 | 
  | Df Residuals: | 19 | BIC: | 208.8 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 66.7197 | 44.382 | 1.503 | 0.149 | -26.174   159.613 | 
  | C(dose)[T.1] | 119.3556 | 56.009 | 2.131 | 0.046 | 2.127   236.584 | 
  | expression | -5.2686 | 18.547 | -0.284 | 0.779 | -44.087    33.550 | 
  | expression:C(dose)[T.1] | -27.5167 | 23.275 | -1.182 | 0.252 | -76.231    21.198 | 
  | Omnibus: | 0.441 | Durbin-Watson: | 2.120 | 
  | Prob(Omnibus): | 0.802 | Jarque-Bera (JB): | 0.572 | 
  | Skew: | 0.214 | Prob(JB): | 0.751 | 
  | Kurtosis: | 2.357 | Cond. No. | 55.0 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.708 | 
  | Model: | OLS | Adj. R-squared: | 0.679 | 
  | Method: | Least Squares | F-statistic: | 24.25 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 4.50e-06 | 
  | Time: | 08:31:36 | Log-Likelihood: | -98.948 | 
  | No. Observations: | 23 | AIC: | 203.9 | 
  | Df Residuals: | 20 | BIC: | 207.3 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 108.2123 | 27.436 | 3.944 | 0.001 | 50.982   165.443 | 
  | C(dose)[T.1] | 53.8049 | 8.003 | 6.723 | 0.000 | 37.112    70.498 | 
  | expression | -22.7413 | 11.316 | -2.010 | 0.058 | -46.346     0.864 | 
  | Omnibus: | 0.958 | Durbin-Watson: | 1.954 | 
  | Prob(Omnibus): | 0.619 | Jarque-Bera (JB): | 0.790 | 
  | Skew: | 0.124 | Prob(JB): | 0.674 | 
  | Kurtosis: | 2.127 | Cond. No. | 19.6 | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.649 | 
  | Model: | OLS | Adj. R-squared: | 0.632 | 
  | Method: | Least Squares | F-statistic: | 38.84 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 3.51e-06 | 
  | Time: | 08:31:36 | Log-Likelihood: | -101.06 | 
  | No. Observations: | 23 | AIC: | 206.1 | 
  | Df Residuals: | 21 | BIC: | 208.4 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900    66.517 | 
  | C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539    71.135 | 
  | Omnibus: | 0.322 | Durbin-Watson: | 1.888 | 
  | Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 | 
  | Skew: | 0.060 | Prob(JB): | 0.785 | 
  | Kurtosis: | 2.299 | Cond. No. | 2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.048 | 
  | Model: | OLS | Adj. R-squared: | 0.003 | 
  | Method: | Least Squares | F-statistic: | 1.061 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.315 | 
  | Time: | 08:31:36 | Log-Likelihood: | -112.54 | 
  | No. Observations: | 23 | AIC: | 229.1 | 
  | Df Residuals: | 21 | BIC: | 231.3 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 128.6684 | 48.046 | 2.678 | 0.014 | 28.751   228.586 | 
  | expression | -20.5284 | 19.931 | -1.030 | 0.315 | -61.978    20.921 | 
  | Omnibus: | 2.228 | Durbin-Watson: | 2.520 | 
  | Prob(Omnibus): | 0.328 | Jarque-Bera (JB): | 1.156 | 
  | Skew: | 0.124 | Prob(JB): | 0.561 | 
  | Kurtosis: | 1.930 | Cond. No. | 19.2 | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 2.467 | 0.142 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.546 | 
  | Model: | OLS | Adj. R-squared: | 0.422 | 
  | Method: | Least Squares | F-statistic: | 4.412 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.0287 | 
  | Time: | 08:31:36 | Log-Likelihood: | -69.376 | 
  | No. Observations: | 15 | AIC: | 146.8 | 
  | Df Residuals: | 11 | BIC: | 149.6 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 33.6165 | 49.202 | 0.683 | 0.509 | -74.677   141.910 | 
  | C(dose)[T.1] | 9.5316 | 73.641 | 0.129 | 0.899 | -152.551   171.614 | 
  | expression | 10.8865 | 15.448 | 0.705 | 0.496 | -23.115    44.888 | 
  | expression:C(dose)[T.1] | 5.5759 | 19.599 | 0.284 | 0.781 | -37.562    48.714 | 
  | Omnibus: | 2.138 | Durbin-Watson: | 0.984 | 
  | Prob(Omnibus): | 0.343 | Jarque-Bera (JB): | 1.110 | 
  | Skew: | -0.288 | Prob(JB): | 0.574 | 
  | Kurtosis: | 1.798 | Cond. No. | 58.4 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.543 | 
  | Model: | OLS | Adj. R-squared: | 0.467 | 
  | Method: | Least Squares | F-statistic: | 7.123 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.00914 | 
  | Time: | 08:31:37 | Log-Likelihood: | -69.431 | 
  | No. Observations: | 15 | AIC: | 144.9 | 
  | Df Residuals: | 12 | BIC: | 147.0 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 22.8573 | 30.244 | 0.756 | 0.464 | -43.039    88.754 | 
  | C(dose)[T.1] | 29.7161 | 18.955 | 1.568 | 0.143 | -11.583    71.015 | 
  | expression | 14.3506 | 9.136 | 1.571 | 0.142 | -5.555    34.256 | 
  | Omnibus: | 2.457 | Durbin-Watson: | 0.966 | 
  | Prob(Omnibus): | 0.293 | Jarque-Bera (JB): | 1.167 | 
  | Skew: | -0.280 | Prob(JB): | 0.558 | 
  | Kurtosis: | 1.753 | Cond. No. | 19.0 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.449 | 
  | Model: | OLS | Adj. R-squared: | 0.406 | 
  | Method: | Least Squares | F-statistic: | 10.58 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.00629 | 
  | Time: | 08:31:37 | Log-Likelihood: | -70.833 | 
  | No. Observations: | 15 | AIC: | 145.7 | 
  | Df Residuals: | 13 | BIC: | 147.1 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570    91.287 | 
  | C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527    81.866 | 
  | Omnibus: | 2.713 | Durbin-Watson: | 0.810 | 
  | Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 | 
  | Skew: | -0.843 | Prob(JB): | 0.393 | 
  | Kurtosis: | 2.619 | Cond. No. | 2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.449 | 
  | Model: | OLS | Adj. R-squared: | 0.407 | 
  | Method: | Least Squares | F-statistic: | 10.60 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.00626 | 
  | Time: | 08:31:37 | Log-Likelihood: | -70.828 | 
  | No. Observations: | 15 | AIC: | 145.7 | 
  | Df Residuals: | 13 | BIC: | 147.1 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 2.8170 | 28.906 | 0.097 | 0.924 | -59.631    65.265 | 
  | expression | 23.7214 | 7.286 | 3.256 | 0.006 | 7.981    39.462 | 
  | Omnibus: | 2.732 | Durbin-Watson: | 1.359 | 
  | Prob(Omnibus): | 0.255 | Jarque-Bera (JB): | 1.229 | 
  | Skew: | 0.290 | Prob(JB): | 0.541 | 
  | Kurtosis: | 1.724 | Cond. No. | 16.1 |