AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.417 0.526 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.602
Method: Least Squares F-statistic: 12.09
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.000118
Time: 22:47:55 Log-Likelihood: -100.82
No. Observations: 23 AIC: 209.6
Df Residuals: 19 BIC: 214.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -33.8849 198.584 -0.171 0.866 -449.526 381.756
C(dose)[T.1] 30.7854 316.625 0.097 0.924 -631.919 693.489
expression 10.6137 23.914 0.444 0.662 -39.440 60.667
expression:C(dose)[T.1] 1.7712 36.515 0.049 0.962 -74.655 78.198
Omnibus: 0.066 Durbin-Watson: 1.918
Prob(Omnibus): 0.968 Jarque-Bera (JB): 0.281
Skew: 0.057 Prob(JB): 0.869
Kurtosis: 2.471 Cond. No. 782.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.622
Method: Least Squares F-statistic: 19.09
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.31e-05
Time: 22:47:55 Log-Likelihood: -100.83
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -40.1902 146.332 -0.275 0.786 -345.433 265.052
C(dose)[T.1] 46.1272 14.144 3.261 0.004 16.624 75.630
expression 11.3733 17.616 0.646 0.526 -25.372 48.119
Omnibus: 0.065 Durbin-Watson: 1.919
Prob(Omnibus): 0.968 Jarque-Bera (JB): 0.284
Skew: 0.044 Prob(JB): 0.867
Kurtosis: 2.462 Cond. No. 296.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:47:55 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.473
Model: OLS Adj. R-squared: 0.448
Method: Least Squares F-statistic: 18.88
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.000285
Time: 22:47:55 Log-Likelihood: -105.73
No. Observations: 23 AIC: 215.5
Df Residuals: 21 BIC: 217.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -408.3635 112.456 -3.631 0.002 -642.229 -174.498
expression 56.7327 13.057 4.345 0.000 29.579 83.887
Omnibus: 1.068 Durbin-Watson: 2.134
Prob(Omnibus): 0.586 Jarque-Bera (JB): 0.306
Skew: 0.260 Prob(JB): 0.858
Kurtosis: 3.224 Cond. No. 187.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.866 0.116 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.741
Model: OLS Adj. R-squared: 0.671
Method: Least Squares F-statistic: 10.51
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00147
Time: 22:47:56 Log-Likelihood: -65.157
No. Observations: 15 AIC: 138.3
Df Residuals: 11 BIC: 141.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -24.9236 134.339 -0.186 0.856 -320.602 270.755
C(dose)[T.1] 577.9435 184.424 3.134 0.010 172.029 983.858
expression 13.5767 19.712 0.689 0.505 -29.810 56.963
expression:C(dose)[T.1] -74.3163 26.395 -2.816 0.017 -132.412 -16.221
Omnibus: 1.039 Durbin-Watson: 1.437
Prob(Omnibus): 0.595 Jarque-Bera (JB): 0.413
Skew: -0.405 Prob(JB): 0.814
Kurtosis: 2.932 Cond. No. 321.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.555
Model: OLS Adj. R-squared: 0.481
Method: Least Squares F-statistic: 7.484
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00776
Time: 22:47:56 Log-Likelihood: -69.227
No. Observations: 15 AIC: 144.5
Df Residuals: 12 BIC: 146.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 257.0152 112.467 2.285 0.041 11.971 502.059
C(dose)[T.1] 59.8559 15.480 3.867 0.002 26.128 93.584
expression -27.8712 16.464 -1.693 0.116 -63.743 8.001
Omnibus: 3.505 Durbin-Watson: 1.156
Prob(Omnibus): 0.173 Jarque-Bera (JB): 2.458
Skew: -0.974 Prob(JB): 0.293
Kurtosis: 2.624 Cond. No. 115.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:47:56 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.076
Method: Least Squares F-statistic: 0.008325
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.929
Time: 22:47:56 Log-Likelihood: -75.295
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 107.5105 152.065 0.707 0.492 -221.006 436.027
expression -1.9759 21.656 -0.091 0.929 -48.761 44.809
Omnibus: 0.519 Durbin-Watson: 1.652
Prob(Omnibus): 0.772 Jarque-Bera (JB): 0.547
Skew: 0.014 Prob(JB): 0.761
Kurtosis: 2.065 Cond. No. 107.