AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.036 0.851 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.665
Model: OLS Adj. R-squared: 0.612
Method: Least Squares F-statistic: 12.55
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.38e-05
Time: 03:37:18 Log-Likelihood: -100.54
No. Observations: 23 AIC: 209.1
Df Residuals: 19 BIC: 213.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 32.1819 38.878 0.828 0.418 -49.190 113.554
C(dose)[T.1] 132.3230 86.220 1.535 0.141 -48.138 312.784
expression 4.7970 8.363 0.574 0.573 -12.706 22.300
expression:C(dose)[T.1] -17.5166 19.059 -0.919 0.370 -57.408 22.375
Omnibus: 2.091 Durbin-Watson: 1.906
Prob(Omnibus): 0.352 Jarque-Bera (JB): 1.214
Skew: 0.229 Prob(JB): 0.545
Kurtosis: 1.971 Cond. No. 108.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 18.55
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.78e-05
Time: 03:37:18 Log-Likelihood: -101.04
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 47.6665 34.901 1.366 0.187 -25.136 120.469
C(dose)[T.1] 53.4990 8.803 6.077 0.000 35.136 71.862
expression 1.4247 7.485 0.190 0.851 -14.190 17.039
Omnibus: 0.196 Durbin-Watson: 1.925
Prob(Omnibus): 0.907 Jarque-Bera (JB): 0.403
Skew: 0.018 Prob(JB): 0.818
Kurtosis: 2.353 Cond. No. 38.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:37:18 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.003
Model: OLS Adj. R-squared: -0.045
Method: Least Squares F-statistic: 0.05866
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.811
Time: 03:37:18 Log-Likelihood: -113.07
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 93.1981 56.127 1.660 0.112 -23.523 209.920
expression -2.9710 12.267 -0.242 0.811 -28.483 22.541
Omnibus: 3.081 Durbin-Watson: 2.489
Prob(Omnibus): 0.214 Jarque-Bera (JB): 1.499
Skew: 0.272 Prob(JB): 0.473
Kurtosis: 1.874 Cond. No. 37.3

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.017 0.898 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.493
Model: OLS Adj. R-squared: 0.354
Method: Least Squares F-statistic: 3.559
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0510
Time: 03:37:18 Log-Likelihood: -70.213
No. Observations: 15 AIC: 148.4
Df Residuals: 11 BIC: 151.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -52.2033 141.009 -0.370 0.718 -362.562 258.156
C(dose)[T.1] 197.4054 153.774 1.284 0.226 -141.048 535.859
expression 31.4291 36.921 0.851 0.413 -49.834 112.693
expression:C(dose)[T.1] -38.2599 39.643 -0.965 0.355 -125.513 48.993
Omnibus: 2.418 Durbin-Watson: 0.636
Prob(Omnibus): 0.298 Jarque-Bera (JB): 1.836
Skew: -0.793 Prob(JB): 0.399
Kurtosis: 2.349 Cond. No. 133.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.450
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 4.900
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0278
Time: 03:37:18 Log-Likelihood: -70.822
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 74.1219 52.302 1.417 0.182 -39.834 188.078
C(dose)[T.1] 49.8596 16.521 3.018 0.011 13.863 85.856
expression -1.7584 13.405 -0.131 0.898 -30.966 27.449
Omnibus: 2.749 Durbin-Watson: 0.808
Prob(Omnibus): 0.253 Jarque-Bera (JB): 1.937
Skew: -0.854 Prob(JB): 0.380
Kurtosis: 2.571 Cond. No. 29.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:37:18 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.032
Model: OLS Adj. R-squared: -0.043
Method: Least Squares F-statistic: 0.4267
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.525
Time: 03:37:18 Log-Likelihood: -75.058
No. Observations: 15 AIC: 154.1
Df Residuals: 13 BIC: 155.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 51.0982 65.933 0.775 0.452 -91.341 193.537
expression 10.6221 16.262 0.653 0.525 -24.509 45.754
Omnibus: 0.365 Durbin-Watson: 1.535
Prob(Omnibus): 0.833 Jarque-Bera (JB): 0.497
Skew: 0.213 Prob(JB): 0.780
Kurtosis: 2.217 Cond. No. 28.3