AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.237 | 0.087 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.771 |
Model: | OLS | Adj. R-squared: | 0.735 |
Method: | Least Squares | F-statistic: | 21.32 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.67e-06 |
Time: | 04:00:04 | Log-Likelihood: | -96.156 |
No. Observations: | 23 | AIC: | 200.3 |
Df Residuals: | 19 | BIC: | 204.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 179.8080 | 198.617 | 0.905 | 0.377 | -235.903 595.519 |
C(dose)[T.1] | 1133.6816 | 435.022 | 2.606 | 0.017 | 223.171 2044.192 |
expression | -11.8689 | 18.763 | -0.633 | 0.535 | -51.140 27.402 |
expression:C(dose)[T.1] | -98.9455 | 40.208 | -2.461 | 0.024 | -183.101 -14.790 |
Omnibus: | 0.243 | Durbin-Watson: | 1.877 |
Prob(Omnibus): | 0.885 | Jarque-Bera (JB): | 0.427 |
Skew: | 0.153 | Prob(JB): | 0.808 |
Kurtosis: | 2.407 | Cond. No. | 1.52e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.698 |
Model: | OLS | Adj. R-squared: | 0.668 |
Method: | Least Squares | F-statistic: | 23.11 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.32e-06 |
Time: | 04:00:04 | Log-Likelihood: | -99.338 |
No. Observations: | 23 | AIC: | 204.7 |
Df Residuals: | 20 | BIC: | 208.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 407.8197 | 196.637 | 2.074 | 0.051 | -2.358 817.997 |
C(dose)[T.1] | 63.3717 | 9.865 | 6.424 | 0.000 | 42.795 83.949 |
expression | -33.4155 | 18.574 | -1.799 | 0.087 | -72.160 5.329 |
Omnibus: | 0.949 | Durbin-Watson: | 1.819 |
Prob(Omnibus): | 0.622 | Jarque-Bera (JB): | 0.913 |
Skew: | -0.322 | Prob(JB): | 0.633 |
Kurtosis: | 2.266 | Cond. No. | 524. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:00:05 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.075 |
Model: | OLS | Adj. R-squared: | 0.031 |
Method: | Least Squares | F-statistic: | 1.694 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.207 |
Time: | 04:00:05 | Log-Likelihood: | -112.21 |
No. Observations: | 23 | AIC: | 228.4 |
Df Residuals: | 21 | BIC: | 230.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -285.5472 | 280.759 | -1.017 | 0.321 | -869.418 298.323 |
expression | 34.0545 | 26.168 | 1.301 | 0.207 | -20.365 88.473 |
Omnibus: | 2.891 | Durbin-Watson: | 2.462 |
Prob(Omnibus): | 0.236 | Jarque-Bera (JB): | 1.596 |
Skew: | 0.355 | Prob(JB): | 0.450 |
Kurtosis: | 1.923 | Cond. No. | 438. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.083 | 0.319 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.495 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 3.587 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0500 |
Time: | 04:00:05 | Log-Likelihood: | -70.183 |
No. Observations: | 15 | AIC: | 148.4 |
Df Residuals: | 11 | BIC: | 151.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 387.8492 | 389.023 | 0.997 | 0.340 | -468.385 1244.083 |
C(dose)[T.1] | 29.8280 | 661.663 | 0.045 | 0.965 | -1426.483 1486.139 |
expression | -30.6033 | 37.139 | -0.824 | 0.427 | -112.346 51.140 |
expression:C(dose)[T.1] | 3.2879 | 61.128 | 0.054 | 0.958 | -131.254 137.830 |
Omnibus: | 3.440 | Durbin-Watson: | 1.098 |
Prob(Omnibus): | 0.179 | Jarque-Bera (JB): | 2.240 |
Skew: | -0.941 | Prob(JB): | 0.326 |
Kurtosis: | 2.786 | Cond. No. | 1.15e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.494 |
Model: | OLS | Adj. R-squared: | 0.410 |
Method: | Least Squares | F-statistic: | 5.867 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0167 |
Time: | 04:00:05 | Log-Likelihood: | -70.185 |
No. Observations: | 15 | AIC: | 146.4 |
Df Residuals: | 12 | BIC: | 148.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 375.1420 | 295.950 | 1.268 | 0.229 | -269.677 1019.961 |
C(dose)[T.1] | 65.3957 | 21.671 | 3.018 | 0.011 | 18.178 112.613 |
expression | -29.3896 | 28.247 | -1.040 | 0.319 | -90.933 32.154 |
Omnibus: | 3.476 | Durbin-Watson: | 1.081 |
Prob(Omnibus): | 0.176 | Jarque-Bera (JB): | 2.250 |
Skew: | -0.943 | Prob(JB): | 0.325 |
Kurtosis: | 2.802 | Cond. No. | 429. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:00:05 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.111 |
Model: | OLS | Adj. R-squared: | 0.042 |
Method: | Least Squares | F-statistic: | 1.618 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.226 |
Time: | 04:00:05 | Log-Likelihood: | -74.420 |
No. Observations: | 15 | AIC: | 152.8 |
Df Residuals: | 13 | BIC: | 154.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -249.1494 | 269.654 | -0.924 | 0.372 | -831.702 333.404 |
expression | 31.8481 | 25.035 | 1.272 | 0.226 | -22.238 85.934 |
Omnibus: | 0.074 | Durbin-Watson: | 1.042 |
Prob(Omnibus): | 0.964 | Jarque-Bera (JB): | 0.300 |
Skew: | -0.055 | Prob(JB): | 0.861 |
Kurtosis: | 2.316 | Cond. No. | 306. |