AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.142 | 0.711 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.707 |
Model: | OLS | Adj. R-squared: | 0.660 |
Method: | Least Squares | F-statistic: | 15.26 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.69e-05 |
Time: | 05:20:18 | Log-Likelihood: | -98.999 |
No. Observations: | 23 | AIC: | 206.0 |
Df Residuals: | 19 | BIC: | 210.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 6.1719 | 36.111 | 0.171 | 0.866 | -69.410 81.753 |
C(dose)[T.1] | 176.4364 | 65.377 | 2.699 | 0.014 | 39.600 313.273 |
expression | 11.0124 | 8.175 | 1.347 | 0.194 | -6.098 28.123 |
expression:C(dose)[T.1] | -28.9602 | 15.317 | -1.891 | 0.074 | -61.020 3.099 |
Omnibus: | 1.857 | Durbin-Watson: | 2.010 |
Prob(Omnibus): | 0.395 | Jarque-Bera (JB): | 1.019 |
Skew: | -0.514 | Prob(JB): | 0.601 |
Kurtosis: | 3.087 | Cond. No. | 85.7 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.617 |
Method: | Least Squares | F-statistic: | 18.70 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.64e-05 |
Time: | 05:20:18 | Log-Likelihood: | -100.98 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 42.1562 | 32.604 | 1.293 | 0.211 | -25.854 110.167 |
C(dose)[T.1] | 53.8337 | 8.838 | 6.091 | 0.000 | 35.398 72.270 |
expression | 2.7630 | 7.345 | 0.376 | 0.711 | -12.558 18.084 |
Omnibus: | 0.777 | Durbin-Watson: | 2.018 |
Prob(Omnibus): | 0.678 | Jarque-Bera (JB): | 0.698 |
Skew: | 0.045 | Prob(JB): | 0.706 |
Kurtosis: | 2.151 | Cond. No. | 34.2 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:20:18 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.005 |
Model: | OLS | Adj. R-squared: | -0.042 |
Method: | Least Squares | F-statistic: | 0.1071 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.747 |
Time: | 05:20:18 | Log-Likelihood: | -113.05 |
No. Observations: | 23 | AIC: | 230.1 |
Df Residuals: | 21 | BIC: | 232.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 96.4790 | 51.712 | 1.866 | 0.076 | -11.063 204.021 |
expression | -3.9199 | 11.976 | -0.327 | 0.747 | -28.825 20.985 |
Omnibus: | 4.021 | Durbin-Watson: | 2.402 |
Prob(Omnibus): | 0.134 | Jarque-Bera (JB): | 1.598 |
Skew: | 0.218 | Prob(JB): | 0.450 |
Kurtosis: | 1.784 | Cond. No. | 32.7 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.115 | 0.741 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.523 |
Model: | OLS | Adj. R-squared: | 0.393 |
Method: | Least Squares | F-statistic: | 4.021 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0371 |
Time: | 05:20:18 | Log-Likelihood: | -69.747 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 11 | BIC: | 150.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -151.9996 | 187.871 | -0.809 | 0.436 | -565.501 261.502 |
C(dose)[T.1] | 293.9145 | 193.032 | 1.523 | 0.156 | -130.945 718.774 |
expression | 63.0559 | 53.892 | 1.170 | 0.267 | -55.560 181.671 |
expression:C(dose)[T.1] | -69.3627 | 54.953 | -1.262 | 0.233 | -190.313 51.588 |
Omnibus: | 1.925 | Durbin-Watson: | 1.358 |
Prob(Omnibus): | 0.382 | Jarque-Bera (JB): | 1.379 |
Skew: | -0.705 | Prob(JB): | 0.502 |
Kurtosis: | 2.535 | Cond. No. | 174. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.454 |
Model: | OLS | Adj. R-squared: | 0.363 |
Method: | Least Squares | F-statistic: | 4.989 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0265 |
Time: | 05:20:18 | Log-Likelihood: | -70.762 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 12 | BIC: | 149.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 80.1468 | 39.269 | 2.041 | 0.064 | -5.413 165.707 |
C(dose)[T.1] | 51.1337 | 16.677 | 3.066 | 0.010 | 14.797 87.470 |
expression | -3.6548 | 10.795 | -0.339 | 0.741 | -27.175 19.866 |
Omnibus: | 2.737 | Durbin-Watson: | 0.802 |
Prob(Omnibus): | 0.254 | Jarque-Bera (JB): | 1.976 |
Skew: | -0.855 | Prob(JB): | 0.372 |
Kurtosis: | 2.512 | Cond. No. | 20.8 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:20:18 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.026 |
Model: | OLS | Adj. R-squared: | -0.049 |
Method: | Least Squares | F-statistic: | 0.3504 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.564 |
Time: | 05:20:18 | Log-Likelihood: | -75.101 |
No. Observations: | 15 | AIC: | 154.2 |
Df Residuals: | 13 | BIC: | 155.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 64.6903 | 49.967 | 1.295 | 0.218 | -43.257 172.638 |
expression | 7.7012 | 13.010 | 0.592 | 0.564 | -20.405 35.807 |
Omnibus: | 0.426 | Durbin-Watson: | 1.505 |
Prob(Omnibus): | 0.808 | Jarque-Bera (JB): | 0.529 |
Skew: | 0.187 | Prob(JB): | 0.768 |
Kurtosis: | 2.159 | Cond. No. | 20.4 |