AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.283 | 0.600 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.671 |
Model: | OLS | Adj. R-squared: | 0.619 |
Method: | Least Squares | F-statistic: | 12.91 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 7.86e-05 |
Time: | 05:26:10 | Log-Likelihood: | -100.32 |
No. Observations: | 23 | AIC: | 208.6 |
Df Residuals: | 19 | BIC: | 213.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -8.0565 | 413.376 | -0.019 | 0.985 | -873.262 857.149 |
C(dose)[T.1] | 755.2011 | 707.883 | 1.067 | 0.299 | -726.415 2236.817 |
expression | 5.8284 | 38.690 | 0.151 | 0.882 | -75.152 86.808 |
expression:C(dose)[T.1] | -65.1347 | 65.846 | -0.989 | 0.335 | -202.953 72.684 |
Omnibus: | 2.905 | Durbin-Watson: | 1.736 |
Prob(Omnibus): | 0.234 | Jarque-Bera (JB): | 1.546 |
Skew: | 0.326 | Prob(JB): | 0.462 |
Kurtosis: | 1.910 | Cond. No. | 2.14e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.654 |
Model: | OLS | Adj. R-squared: | 0.619 |
Method: | Least Squares | F-statistic: | 18.90 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.46e-05 |
Time: | 05:26:10 | Log-Likelihood: | -100.90 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 20 | BIC: | 211.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 232.1858 | 334.327 | 0.694 | 0.495 | -465.208 929.579 |
C(dose)[T.1] | 55.0302 | 9.271 | 5.936 | 0.000 | 35.692 74.369 |
expression | -16.6598 | 31.290 | -0.532 | 0.600 | -81.930 48.610 |
Omnibus: | 1.084 | Durbin-Watson: | 1.979 |
Prob(Omnibus): | 0.581 | Jarque-Bera (JB): | 0.843 |
Skew: | 0.140 | Prob(JB): | 0.656 |
Kurtosis: | 2.105 | Cond. No. | 833. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:26:10 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.044 |
Model: | OLS | Adj. R-squared: | -0.001 |
Method: | Least Squares | F-statistic: | 0.9742 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.335 |
Time: | 05:26:10 | Log-Likelihood: | -112.58 |
No. Observations: | 23 | AIC: | 229.2 |
Df Residuals: | 21 | BIC: | 231.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -425.1904 | 511.598 | -0.831 | 0.415 | -1489.116 638.735 |
expression | 47.0485 | 47.667 | 0.987 | 0.335 | -52.081 146.178 |
Omnibus: | 2.712 | Durbin-Watson: | 2.246 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.378 |
Skew: | 0.242 | Prob(JB): | 0.502 |
Kurtosis: | 1.903 | Cond. No. | 785. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
6.256 | 0.028 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.661 |
Model: | OLS | Adj. R-squared: | 0.569 |
Method: | Least Squares | F-statistic: | 7.159 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00618 |
Time: | 05:26:10 | Log-Likelihood: | -67.180 |
No. Observations: | 15 | AIC: | 142.4 |
Df Residuals: | 11 | BIC: | 145.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 262.9199 | 321.502 | 0.818 | 0.431 | -444.701 970.541 |
C(dose)[T.1] | 384.0175 | 382.746 | 1.003 | 0.337 | -458.400 1226.435 |
expression | -21.4697 | 35.294 | -0.608 | 0.555 | -99.150 56.211 |
expression:C(dose)[T.1] | -36.8055 | 42.018 | -0.876 | 0.400 | -129.287 55.676 |
Omnibus: | 0.637 | Durbin-Watson: | 1.608 |
Prob(Omnibus): | 0.727 | Jarque-Bera (JB): | 0.239 |
Skew: | 0.300 | Prob(JB): | 0.888 |
Kurtosis: | 2.851 | Cond. No. | 800. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.638 |
Model: | OLS | Adj. R-squared: | 0.577 |
Method: | Least Squares | F-statistic: | 10.56 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00226 |
Time: | 05:26:10 | Log-Likelihood: | -67.686 |
No. Observations: | 15 | AIC: | 141.4 |
Df Residuals: | 12 | BIC: | 143.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 499.3657 | 172.939 | 2.888 | 0.014 | 122.563 876.168 |
C(dose)[T.1] | 48.9446 | 12.761 | 3.835 | 0.002 | 21.140 76.749 |
expression | -47.4372 | 18.965 | -2.501 | 0.028 | -88.759 -6.115 |
Omnibus: | 0.633 | Durbin-Watson: | 1.329 |
Prob(Omnibus): | 0.729 | Jarque-Bera (JB): | 0.661 |
Skew: | 0.313 | Prob(JB): | 0.719 |
Kurtosis: | 2.185 | Cond. No. | 251. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:26:10 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.194 |
Model: | OLS | Adj. R-squared: | 0.131 |
Method: | Least Squares | F-statistic: | 3.119 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.101 |
Time: | 05:26:10 | Log-Likelihood: | -73.687 |
No. Observations: | 15 | AIC: | 151.4 |
Df Residuals: | 13 | BIC: | 152.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 530.6939 | 247.615 | 2.143 | 0.052 | -4.246 1065.634 |
expression | -48.0112 | 27.184 | -1.766 | 0.101 | -106.739 10.717 |
Omnibus: | 0.065 | Durbin-Watson: | 1.958 |
Prob(Omnibus): | 0.968 | Jarque-Bera (JB): | 0.163 |
Skew: | 0.113 | Prob(JB): | 0.922 |
Kurtosis: | 2.543 | Cond. No. | 250. |