AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.936 0.179 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.709
Model: OLS Adj. R-squared: 0.664
Method: Least Squares F-statistic: 15.46
Date: Tue, 03 Dec 2024 Prob (F-statistic): 2.47e-05
Time: 11:46:25 Log-Likelihood: -98.891
No. Observations: 23 AIC: 205.8
Df Residuals: 19 BIC: 210.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 147.3610 220.313 0.669 0.512 -313.760 608.482
C(dose)[T.1] -316.2292 262.366 -1.205 0.243 -865.368 232.909
expression -12.9200 30.547 -0.423 0.677 -76.855 51.015
expression:C(dose)[T.1] 49.9473 36.010 1.387 0.181 -25.422 125.316
Omnibus: 1.122 Durbin-Watson: 2.171
Prob(Omnibus): 0.571 Jarque-Bera (JB): 0.469
Skew: 0.347 Prob(JB): 0.791
Kurtosis: 3.090 Cond. No. 687.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.680
Model: OLS Adj. R-squared: 0.648
Method: Least Squares F-statistic: 21.25
Date: Tue, 03 Dec 2024 Prob (F-statistic): 1.12e-05
Time: 11:46:25 Log-Likelihood: -100.00
No. Observations: 23 AIC: 206.0
Df Residuals: 20 BIC: 209.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -111.7773 119.429 -0.936 0.360 -360.903 137.348
C(dose)[T.1] 47.4635 9.378 5.061 0.000 27.902 67.025
expression 23.0216 16.545 1.391 0.179 -11.491 57.534
Omnibus: 0.278 Durbin-Watson: 2.007
Prob(Omnibus): 0.870 Jarque-Bera (JB): 0.457
Skew: -0.151 Prob(JB): 0.796
Kurtosis: 2.380 Cond. No. 214.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 03 Dec 2024 Prob (F-statistic): 3.51e-06
Time: 11:46:25 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.270
Model: OLS Adj. R-squared: 0.235
Method: Least Squares F-statistic: 7.775
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0110
Time: 11:46:25 Log-Likelihood: -109.48
No. Observations: 23 AIC: 223.0
Df Residuals: 21 BIC: 225.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -365.4508 159.771 -2.287 0.033 -697.713 -33.189
expression 60.7157 21.775 2.788 0.011 15.433 105.999
Omnibus: 0.095 Durbin-Watson: 2.678
Prob(Omnibus): 0.953 Jarque-Bera (JB): 0.075
Skew: -0.075 Prob(JB): 0.963
Kurtosis: 2.763 Cond. No. 194.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.076 0.788 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.452
Model: OLS Adj. R-squared: 0.303
Method: Least Squares F-statistic: 3.027
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0753
Time: 11:46:25 Log-Likelihood: -70.786
No. Observations: 15 AIC: 149.6
Df Residuals: 11 BIC: 152.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 15.4927 448.534 0.035 0.973 -971.723 1002.709
C(dose)[T.1] 53.9594 490.833 0.110 0.914 -1026.357 1134.276
expression 7.0517 60.879 0.116 0.910 -126.941 141.044
expression:C(dose)[T.1] -0.1969 67.399 -0.003 0.998 -148.540 148.146
Omnibus: 2.119 Durbin-Watson: 0.862
Prob(Omnibus): 0.347 Jarque-Bera (JB): 1.594
Skew: -0.743 Prob(JB): 0.451
Kurtosis: 2.416 Cond. No. 661.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.452
Model: OLS Adj. R-squared: 0.361
Method: Least Squares F-statistic: 4.954
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0270
Time: 11:46:25 Log-Likelihood: -70.786
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 16.6757 184.559 0.090 0.929 -385.443 418.794
C(dose)[T.1] 52.5269 19.806 2.652 0.021 9.373 95.681
expression 6.8910 25.010 0.276 0.788 -47.602 61.384
Omnibus: 2.120 Durbin-Watson: 0.862
Prob(Omnibus): 0.346 Jarque-Bera (JB): 1.594
Skew: -0.743 Prob(JB): 0.451
Kurtosis: 2.416 Cond. No. 172.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00629
Time: 11:46:25 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.131
Model: OLS Adj. R-squared: 0.064
Method: Least Squares F-statistic: 1.963
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.185
Time: 11:46:25 Log-Likelihood: -74.245
No. Observations: 15 AIC: 152.5
Df Residuals: 13 BIC: 153.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 332.3907 170.647 1.948 0.073 -36.270 701.051
expression -33.5886 23.973 -1.401 0.185 -85.379 18.202
Omnibus: 0.308 Durbin-Watson: 1.208
Prob(Omnibus): 0.857 Jarque-Bera (JB): 0.350
Skew: -0.274 Prob(JB): 0.839
Kurtosis: 2.490 Cond. No. 131.