AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.073 0.790 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.598
Method: Least Squares F-statistic: 11.92
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.000128
Time: 22:53:03 Log-Likelihood: -100.93
No. Observations: 23 AIC: 209.9
Df Residuals: 19 BIC: 214.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 22.2192 73.434 0.303 0.766 -131.481 175.919
C(dose)[T.1] 105.4235 135.439 0.778 0.446 -178.054 388.900
expression 4.9212 11.257 0.437 0.667 -18.640 28.483
expression:C(dose)[T.1] -7.8742 20.135 -0.391 0.700 -50.018 34.269
Omnibus: 1.001 Durbin-Watson: 1.931
Prob(Omnibus): 0.606 Jarque-Bera (JB): 0.789
Skew: 0.081 Prob(JB): 0.674
Kurtosis: 2.107 Cond. No. 249.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 18.60
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.73e-05
Time: 22:53:04 Log-Likelihood: -101.02
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 38.2174 59.679 0.640 0.529 -86.270 162.705
C(dose)[T.1] 52.5854 9.188 5.723 0.000 33.419 71.751
expression 2.4601 9.134 0.269 0.790 -16.592 21.513
Omnibus: 0.374 Durbin-Watson: 1.908
Prob(Omnibus): 0.829 Jarque-Bera (JB): 0.513
Skew: 0.032 Prob(JB): 0.774
Kurtosis: 2.271 Cond. No. 93.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:53:04 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.078
Model: OLS Adj. R-squared: 0.034
Method: Least Squares F-statistic: 1.768
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.198
Time: 22:53:04 Log-Likelihood: -112.18
No. Observations: 23 AIC: 228.4
Df Residuals: 21 BIC: 230.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -42.1646 91.932 -0.459 0.651 -233.348 149.019
expression 18.3382 13.793 1.330 0.198 -10.345 47.022
Omnibus: 4.813 Durbin-Watson: 2.753
Prob(Omnibus): 0.090 Jarque-Bera (JB): 1.847
Skew: 0.297 Prob(JB): 0.397
Kurtosis: 1.746 Cond. No. 90.4

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.557 0.136 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.546
Model: OLS Adj. R-squared: 0.422
Method: Least Squares F-statistic: 4.403
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0289
Time: 22:53:04 Log-Likelihood: -69.384
No. Observations: 15 AIC: 146.8
Df Residuals: 11 BIC: 149.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -67.9390 126.676 -0.536 0.602 -346.750 210.873
C(dose)[T.1] 53.4187 174.806 0.306 0.766 -331.326 438.164
expression 21.7896 20.315 1.073 0.306 -22.923 66.502
expression:C(dose)[T.1] -0.4455 28.183 -0.016 0.988 -62.476 61.585
Omnibus: 1.954 Durbin-Watson: 1.183
Prob(Omnibus): 0.376 Jarque-Bera (JB): 1.196
Skew: -0.405 Prob(JB): 0.550
Kurtosis: 1.879 Cond. No. 200.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.546
Model: OLS Adj. R-squared: 0.470
Method: Least Squares F-statistic: 7.204
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00880
Time: 22:53:04 Log-Likelihood: -69.384
No. Observations: 15 AIC: 144.8
Df Residuals: 12 BIC: 146.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -66.5010 84.401 -0.788 0.446 -250.396 117.394
C(dose)[T.1] 50.6658 14.320 3.538 0.004 19.465 81.866
expression 21.5582 13.481 1.599 0.136 -7.816 50.932
Omnibus: 1.943 Durbin-Watson: 1.179
Prob(Omnibus): 0.378 Jarque-Bera (JB): 1.191
Skew: -0.403 Prob(JB): 0.551
Kurtosis: 1.880 Cond. No. 75.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:53:04 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.072
Model: OLS Adj. R-squared: 0.000
Method: Least Squares F-statistic: 1.002
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.335
Time: 22:53:04 Log-Likelihood: -74.743
No. Observations: 15 AIC: 153.5
Df Residuals: 13 BIC: 154.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -20.5764 114.531 -0.180 0.860 -268.006 226.853
expression 18.4975 18.476 1.001 0.335 -21.418 58.413
Omnibus: 1.980 Durbin-Watson: 1.914
Prob(Omnibus): 0.372 Jarque-Bera (JB): 1.077
Skew: 0.290 Prob(JB): 0.584
Kurtosis: 1.822 Cond. No. 74.4