AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.633 0.436 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.607
Method: Least Squares F-statistic: 12.34
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000104
Time: 04:33:49 Log-Likelihood: -100.67
No. Observations: 23 AIC: 209.3
Df Residuals: 19 BIC: 213.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -114.6429 214.807 -0.534 0.600 -564.239 334.954
C(dose)[T.1] 154.2928 384.442 0.401 0.693 -650.354 958.940
expression 16.0021 20.349 0.786 0.441 -26.589 58.593
expression:C(dose)[T.1] -9.2632 37.618 -0.246 0.808 -87.999 69.472
Omnibus: 1.071 Durbin-Watson: 1.636
Prob(Omnibus): 0.585 Jarque-Bera (JB): 0.850
Skew: -0.162 Prob(JB): 0.654
Kurtosis: 2.116 Cond. No. 1.08e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.660
Model: OLS Adj. R-squared: 0.626
Method: Least Squares F-statistic: 19.40
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.08e-05
Time: 04:33:49 Log-Likelihood: -100.70
No. Observations: 23 AIC: 207.4
Df Residuals: 20 BIC: 210.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -86.0417 176.402 -0.488 0.631 -454.009 281.926
C(dose)[T.1] 59.6732 11.747 5.080 0.000 35.170 84.177
expression 13.2915 16.708 0.796 0.436 -21.561 48.144
Omnibus: 1.088 Durbin-Watson: 1.639
Prob(Omnibus): 0.580 Jarque-Bera (JB): 0.844
Skew: -0.139 Prob(JB): 0.656
Kurtosis: 2.104 Cond. No. 427.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:33:50 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.221
Model: OLS Adj. R-squared: 0.184
Method: Least Squares F-statistic: 5.954
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0236
Time: 04:33:50 Log-Likelihood: -110.23
No. Observations: 23 AIC: 224.5
Df Residuals: 21 BIC: 226.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 536.6204 187.359 2.864 0.009 146.985 926.255
expression -44.2571 18.138 -2.440 0.024 -81.977 -6.538
Omnibus: 1.227 Durbin-Watson: 2.680
Prob(Omnibus): 0.541 Jarque-Bera (JB): 1.038
Skew: 0.316 Prob(JB): 0.595
Kurtosis: 2.173 Cond. No. 307.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.026 0.875 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.475
Model: OLS Adj. R-squared: 0.332
Method: Least Squares F-statistic: 3.319
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0606
Time: 04:33:50 Log-Likelihood: -70.466
No. Observations: 15 AIC: 148.9
Df Residuals: 11 BIC: 151.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -191.0993 650.680 -0.294 0.774 -1623.237 1241.038
C(dose)[T.1] 735.3656 942.202 0.780 0.452 -1338.407 2809.138
expression 26.0605 65.580 0.397 0.699 -118.280 170.401
expression:C(dose)[T.1] -67.8350 93.439 -0.726 0.483 -273.492 137.822
Omnibus: 1.730 Durbin-Watson: 0.979
Prob(Omnibus): 0.421 Jarque-Bera (JB): 1.312
Skew: -0.552 Prob(JB): 0.519
Kurtosis: 2.063 Cond. No. 1.59e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.450
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 4.908
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0277
Time: 04:33:50 Log-Likelihood: -70.817
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 140.3906 454.340 0.309 0.763 -849.531 1130.312
C(dose)[T.1] 51.5249 21.385 2.409 0.033 4.931 98.119
expression -7.3548 45.784 -0.161 0.875 -107.110 92.401
Omnibus: 2.178 Durbin-Watson: 0.815
Prob(Omnibus): 0.337 Jarque-Bera (JB): 1.619
Skew: -0.755 Prob(JB): 0.445
Kurtosis: 2.444 Cond. No. 592.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:33:50 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.184
Model: OLS Adj. R-squared: 0.121
Method: Least Squares F-statistic: 2.929
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.111
Time: 04:33:50 Log-Likelihood: -73.776
No. Observations: 15 AIC: 151.6
Df Residuals: 13 BIC: 153.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -586.5218 397.569 -1.475 0.164 -1445.417 272.374
expression 67.4178 39.395 1.711 0.111 -17.690 152.526
Omnibus: 1.372 Durbin-Watson: 1.295
Prob(Omnibus): 0.504 Jarque-Bera (JB): 0.949
Skew: -0.583 Prob(JB): 0.622
Kurtosis: 2.600 Cond. No. 441.