AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.022 | 0.884 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.595 |
Method: | Least Squares | F-statistic: | 11.76 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000139 |
Time: | 04:34:47 | Log-Likelihood: | -101.03 |
No. Observations: | 23 | AIC: | 210.1 |
Df Residuals: | 19 | BIC: | 214.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 61.0151 | 227.291 | 0.268 | 0.791 | -414.710 536.740 |
C(dose)[T.1] | 128.4577 | 433.172 | 0.297 | 0.770 | -778.183 1035.098 |
expression | -0.7096 | 23.687 | -0.030 | 0.976 | -50.287 48.868 |
expression:C(dose)[T.1] | -7.6295 | 44.378 | -0.172 | 0.865 | -100.514 85.255 |
Omnibus: | 0.133 | Durbin-Watson: | 1.837 |
Prob(Omnibus): | 0.936 | Jarque-Bera (JB): | 0.354 |
Skew: | -0.030 | Prob(JB): | 0.838 |
Kurtosis: | 2.395 | Cond. No. | 1.13e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.53 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.80e-05 |
Time: | 04:34:47 | Log-Likelihood: | -101.05 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 81.8641 | 187.513 | 0.437 | 0.667 | -309.281 473.009 |
C(dose)[T.1] | 54.0075 | 9.873 | 5.470 | 0.000 | 33.414 74.601 |
expression | -2.8832 | 19.539 | -0.148 | 0.884 | -43.640 37.874 |
Omnibus: | 0.304 | Durbin-Watson: | 1.884 |
Prob(Omnibus): | 0.859 | Jarque-Bera (JB): | 0.473 |
Skew: | 0.004 | Prob(JB): | 0.790 |
Kurtosis: | 2.298 | Cond. No. | 421. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:34:47 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.125 |
Model: | OLS | Adj. R-squared: | 0.083 |
Method: | Least Squares | F-statistic: | 2.997 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0981 |
Time: | 04:34:47 | Log-Likelihood: | -111.57 |
No. Observations: | 23 | AIC: | 227.1 |
Df Residuals: | 21 | BIC: | 229.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -369.5739 | 259.622 | -1.424 | 0.169 | -909.487 170.339 |
expression | 46.3035 | 26.747 | 1.731 | 0.098 | -9.321 101.928 |
Omnibus: | 1.570 | Durbin-Watson: | 2.554 |
Prob(Omnibus): | 0.456 | Jarque-Bera (JB): | 1.319 |
Skew: | 0.430 | Prob(JB): | 0.517 |
Kurtosis: | 2.202 | Cond. No. | 377. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.409 | 0.147 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.556 |
Model: | OLS | Adj. R-squared: | 0.435 |
Method: | Least Squares | F-statistic: | 4.597 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0255 |
Time: | 04:34:47 | Log-Likelihood: | -69.206 |
No. Observations: | 15 | AIC: | 146.4 |
Df Residuals: | 11 | BIC: | 149.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 221.3178 | 269.197 | 0.822 | 0.428 | -371.181 813.817 |
C(dose)[T.1] | 273.4870 | 365.695 | 0.748 | 0.470 | -531.402 1078.376 |
expression | -17.4738 | 30.542 | -0.572 | 0.579 | -84.697 49.749 |
expression:C(dose)[T.1] | -25.6757 | 41.582 | -0.617 | 0.549 | -117.198 65.846 |
Omnibus: | 1.797 | Durbin-Watson: | 0.851 |
Prob(Omnibus): | 0.407 | Jarque-Bera (JB): | 1.415 |
Skew: | -0.630 | Prob(JB): | 0.493 |
Kurtosis: | 2.176 | Cond. No. | 599. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.541 |
Model: | OLS | Adj. R-squared: | 0.464 |
Method: | Least Squares | F-statistic: | 7.070 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00936 |
Time: | 04:34:47 | Log-Likelihood: | -69.461 |
No. Observations: | 15 | AIC: | 144.9 |
Df Residuals: | 12 | BIC: | 147.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 343.3094 | 178.074 | 1.928 | 0.078 | -44.680 731.299 |
C(dose)[T.1] | 47.8666 | 14.390 | 3.326 | 0.006 | 16.514 79.219 |
expression | -31.3257 | 20.185 | -1.552 | 0.147 | -75.304 12.653 |
Omnibus: | 2.067 | Durbin-Watson: | 0.898 |
Prob(Omnibus): | 0.356 | Jarque-Bera (JB): | 1.481 |
Skew: | -0.588 | Prob(JB): | 0.477 |
Kurtosis: | 2.008 | Cond. No. | 222. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:34:47 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.118 |
Model: | OLS | Adj. R-squared: | 0.050 |
Method: | Least Squares | F-statistic: | 1.732 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.211 |
Time: | 04:34:47 | Log-Likelihood: | -74.362 |
No. Observations: | 15 | AIC: | 152.7 |
Df Residuals: | 13 | BIC: | 154.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 403.9605 | 235.951 | 1.712 | 0.111 | -105.780 913.701 |
expression | -35.3240 | 26.839 | -1.316 | 0.211 | -93.306 22.658 |
Omnibus: | 0.095 | Durbin-Watson: | 1.673 |
Prob(Omnibus): | 0.954 | Jarque-Bera (JB): | 0.320 |
Skew: | 0.050 | Prob(JB): | 0.852 |
Kurtosis: | 2.291 | Cond. No. | 220. |