AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.428 0.521 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.602
Method: Least Squares F-statistic: 12.10
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000117
Time: 04:27:32 Log-Likelihood: -100.82
No. Observations: 23 AIC: 209.6
Df Residuals: 19 BIC: 214.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 203.7696 329.971 0.618 0.544 -486.867 894.406
C(dose)[T.1] 97.4681 539.620 0.181 0.859 -1031.969 1226.905
expression -13.5190 29.821 -0.453 0.655 -75.935 48.897
expression:C(dose)[T.1] -3.3599 47.680 -0.070 0.945 -103.156 96.436
Omnibus: 1.847 Durbin-Watson: 1.815
Prob(Omnibus): 0.397 Jarque-Bera (JB): 1.032
Skew: 0.050 Prob(JB): 0.597
Kurtosis: 1.967 Cond. No. 1.71e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.622
Method: Least Squares F-statistic: 19.10
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.29e-05
Time: 04:27:32 Log-Likelihood: -100.82
No. Observations: 23 AIC: 207.6
Df Residuals: 20 BIC: 211.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 218.3098 251.009 0.870 0.395 -305.285 741.905
C(dose)[T.1] 59.4538 12.759 4.660 0.000 32.840 86.068
expression -14.8333 22.682 -0.654 0.521 -62.148 32.481
Omnibus: 1.763 Durbin-Watson: 1.819
Prob(Omnibus): 0.414 Jarque-Bera (JB): 1.007
Skew: 0.038 Prob(JB): 0.604
Kurtosis: 1.978 Cond. No. 659.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:27:32 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.283
Model: OLS Adj. R-squared: 0.249
Method: Least Squares F-statistic: 8.303
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00893
Time: 04:27:32 Log-Likelihood: -109.27
No. Observations: 23 AIC: 222.5
Df Residuals: 21 BIC: 224.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -625.7654 244.905 -2.555 0.018 -1135.073 -116.458
expression 62.6524 21.743 2.882 0.009 17.436 107.869
Omnibus: 1.960 Durbin-Watson: 2.272
Prob(Omnibus): 0.375 Jarque-Bera (JB): 1.475
Skew: 0.431 Prob(JB): 0.478
Kurtosis: 2.109 Cond. No. 455.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.820 0.383 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.486
Model: OLS Adj. R-squared: 0.346
Method: Least Squares F-statistic: 3.472
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0543
Time: 04:27:32 Log-Likelihood: -70.303
No. Observations: 15 AIC: 148.6
Df Residuals: 11 BIC: 151.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -198.5250 412.639 -0.481 0.640 -1106.737 709.687
C(dose)[T.1] -133.0322 828.108 -0.161 0.875 -1955.685 1689.620
expression 28.5760 44.319 0.645 0.532 -68.970 126.122
expression:C(dose)[T.1] 20.0847 89.663 0.224 0.827 -177.263 217.433
Omnibus: 1.341 Durbin-Watson: 0.796
Prob(Omnibus): 0.512 Jarque-Bera (JB): 1.116
Skew: -0.553 Prob(JB): 0.572
Kurtosis: 2.249 Cond. No. 1.18e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.484
Model: OLS Adj. R-squared: 0.398
Method: Least Squares F-statistic: 5.629
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0189
Time: 04:27:32 Log-Likelihood: -70.337
No. Observations: 15 AIC: 146.7
Df Residuals: 12 BIC: 148.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -244.1946 344.262 -0.709 0.492 -994.277 505.887
C(dose)[T.1] 52.4289 15.641 3.352 0.006 18.351 86.507
expression 33.4830 36.971 0.906 0.383 -47.069 114.035
Omnibus: 1.331 Durbin-Watson: 0.758
Prob(Omnibus): 0.514 Jarque-Bera (JB): 1.094
Skew: -0.569 Prob(JB): 0.579
Kurtosis: 2.326 Cond. No. 425.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:27:32 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.076
Method: Least Squares F-statistic: 0.01168
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.916
Time: 04:27:32 Log-Likelihood: -75.293
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 45.5203 445.521 0.102 0.920 -916.970 1008.010
expression 5.2020 48.124 0.108 0.916 -98.763 109.167
Omnibus: 0.922 Durbin-Watson: 1.629
Prob(Omnibus): 0.631 Jarque-Bera (JB): 0.692
Skew: 0.079 Prob(JB): 0.708
Kurtosis: 1.960 Cond. No. 411.