AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.273 | 0.607 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.751 |
Model: | OLS | Adj. R-squared: | 0.712 |
Method: | Least Squares | F-statistic: | 19.12 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 5.80e-06 |
Time: | 04:01:23 | Log-Likelihood: | -97.109 |
No. Observations: | 23 | AIC: | 202.2 |
Df Residuals: | 19 | BIC: | 206.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -329.2172 | 313.449 | -1.050 | 0.307 | -985.273 326.839 |
C(dose)[T.1] | 1460.4772 | 514.434 | 2.839 | 0.010 | 383.754 2537.200 |
expression | 33.6421 | 27.498 | 1.223 | 0.236 | -23.913 91.197 |
expression:C(dose)[T.1] | -120.6641 | 44.253 | -2.727 | 0.013 | -213.286 -28.042 |
Omnibus: | 0.886 | Durbin-Watson: | 1.469 |
Prob(Omnibus): | 0.642 | Jarque-Bera (JB): | 0.753 |
Skew: | 0.404 | Prob(JB): | 0.686 |
Kurtosis: | 2.635 | Cond. No. | 1.96e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.654 |
Model: | OLS | Adj. R-squared: | 0.619 |
Method: | Least Squares | F-statistic: | 18.88 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.47e-05 |
Time: | 04:01:23 | Log-Likelihood: | -100.91 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 20 | BIC: | 211.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 201.8050 | 282.368 | 0.715 | 0.483 | -387.205 790.815 |
C(dose)[T.1] | 58.0859 | 12.585 | 4.616 | 0.000 | 31.835 84.337 |
expression | -12.9503 | 24.770 | -0.523 | 0.607 | -64.619 38.718 |
Omnibus: | 1.399 | Durbin-Watson: | 1.971 |
Prob(Omnibus): | 0.497 | Jarque-Bera (JB): | 0.943 |
Skew: | 0.135 | Prob(JB): | 0.624 |
Kurtosis: | 2.046 | Cond. No. | 758. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:01:23 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.285 |
Model: | OLS | Adj. R-squared: | 0.251 |
Method: | Least Squares | F-statistic: | 8.371 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00870 |
Time: | 04:01:23 | Log-Likelihood: | -109.25 |
No. Observations: | 23 | AIC: | 222.5 |
Df Residuals: | 21 | BIC: | 224.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -725.3303 | 278.322 | -2.606 | 0.016 | -1304.132 -146.529 |
expression | 69.5653 | 24.044 | 2.893 | 0.009 | 19.562 119.568 |
Omnibus: | 0.932 | Durbin-Watson: | 1.664 |
Prob(Omnibus): | 0.627 | Jarque-Bera (JB): | 0.922 |
Skew: | 0.371 | Prob(JB): | 0.631 |
Kurtosis: | 2.359 | Cond. No. | 532. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.049 | 0.829 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.614 |
Model: | OLS | Adj. R-squared: | 0.509 |
Method: | Least Squares | F-statistic: | 5.835 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0123 |
Time: | 04:01:23 | Log-Likelihood: | -68.158 |
No. Observations: | 15 | AIC: | 144.3 |
Df Residuals: | 11 | BIC: | 147.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 347.7251 | 248.572 | 1.399 | 0.189 | -199.377 894.828 |
C(dose)[T.1] | -812.3843 | 400.141 | -2.030 | 0.067 | -1693.089 68.320 |
expression | -24.4589 | 21.673 | -1.129 | 0.283 | -72.160 23.243 |
expression:C(dose)[T.1] | 75.9002 | 35.200 | 2.156 | 0.054 | -1.575 153.375 |
Omnibus: | 3.372 | Durbin-Watson: | 1.343 |
Prob(Omnibus): | 0.185 | Jarque-Bera (JB): | 2.307 |
Skew: | -0.947 | Prob(JB): | 0.316 |
Kurtosis: | 2.674 | Cond. No. | 843. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.451 |
Model: | OLS | Adj. R-squared: | 0.360 |
Method: | Least Squares | F-statistic: | 4.929 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0274 |
Time: | 04:01:23 | Log-Likelihood: | -70.802 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 17.9910 | 223.790 | 0.080 | 0.937 | -469.606 505.588 |
C(dose)[T.1] | 49.8865 | 16.014 | 3.115 | 0.009 | 14.994 84.779 |
expression | 4.3140 | 19.502 | 0.221 | 0.829 | -38.178 46.806 |
Omnibus: | 2.588 | Durbin-Watson: | 0.849 |
Prob(Omnibus): | 0.274 | Jarque-Bera (JB): | 1.790 |
Skew: | -0.823 | Prob(JB): | 0.409 |
Kurtosis: | 2.605 | Cond. No. | 328. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:01:23 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.007 |
Model: | OLS | Adj. R-squared: | -0.069 |
Method: | Least Squares | F-statistic: | 0.09259 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.766 |
Time: | 04:01:23 | Log-Likelihood: | -75.247 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 179.2110 | 281.321 | 0.637 | 0.535 | -428.545 786.967 |
expression | -7.5206 | 24.716 | -0.304 | 0.766 | -60.917 45.876 |
Omnibus: | 1.034 | Durbin-Watson: | 1.605 |
Prob(Omnibus): | 0.596 | Jarque-Bera (JB): | 0.740 |
Skew: | 0.134 | Prob(JB): | 0.691 |
Kurtosis: | 1.945 | Cond. No. | 319. |