AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.061 | 0.167 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.700 |
Model: | OLS | Adj. R-squared: | 0.653 |
Method: | Least Squares | F-statistic: | 14.77 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.33e-05 |
Time: | 04:27:49 | Log-Likelihood: | -99.261 |
No. Observations: | 23 | AIC: | 206.5 |
Df Residuals: | 19 | BIC: | 211.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 91.9251 | 127.532 | 0.721 | 0.480 | -175.003 358.854 |
C(dose)[T.1] | -81.9377 | 139.054 | -0.589 | 0.563 | -372.981 209.106 |
expression | -5.6771 | 19.176 | -0.296 | 0.770 | -45.814 34.460 |
expression:C(dose)[T.1] | 23.0801 | 21.548 | 1.071 | 0.298 | -22.021 68.181 |
Omnibus: | 0.205 | Durbin-Watson: | 1.792 |
Prob(Omnibus): | 0.902 | Jarque-Bera (JB): | 0.375 |
Skew: | 0.170 | Prob(JB): | 0.829 |
Kurtosis: | 2.476 | Cond. No. | 309. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.682 |
Model: | OLS | Adj. R-squared: | 0.650 |
Method: | Least Squares | F-statistic: | 21.43 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.06e-05 |
Time: | 04:27:49 | Log-Likelihood: | -99.935 |
No. Observations: | 23 | AIC: | 205.9 |
Df Residuals: | 20 | BIC: | 209.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -29.5140 | 58.607 | -0.504 | 0.620 | -151.766 92.738 |
C(dose)[T.1] | 66.4164 | 12.359 | 5.374 | 0.000 | 40.637 92.196 |
expression | 12.6017 | 8.778 | 1.436 | 0.167 | -5.710 30.913 |
Omnibus: | 0.042 | Durbin-Watson: | 1.687 |
Prob(Omnibus): | 0.979 | Jarque-Bera (JB): | 0.232 |
Skew: | 0.072 | Prob(JB): | 0.890 |
Kurtosis: | 2.529 | Cond. No. | 90.4 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:27:49 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.222 |
Model: | OLS | Adj. R-squared: | 0.185 |
Method: | Least Squares | F-statistic: | 6.006 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0231 |
Time: | 04:27:49 | Log-Likelihood: | -110.21 |
No. Observations: | 23 | AIC: | 224.4 |
Df Residuals: | 21 | BIC: | 226.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 216.0485 | 55.990 | 3.859 | 0.001 | 99.611 332.486 |
expression | -22.1773 | 9.049 | -2.451 | 0.023 | -40.996 -3.359 |
Omnibus: | 5.246 | Durbin-Watson: | 2.236 |
Prob(Omnibus): | 0.073 | Jarque-Bera (JB): | 2.341 |
Skew: | 0.480 | Prob(JB): | 0.310 |
Kurtosis: | 1.766 | Cond. No. | 55.8 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.084 | 0.778 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.554 |
Model: | OLS | Adj. R-squared: | 0.433 |
Method: | Least Squares | F-statistic: | 4.563 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0261 |
Time: | 04:27:49 | Log-Likelihood: | -69.236 |
No. Observations: | 15 | AIC: | 146.5 |
Df Residuals: | 11 | BIC: | 149.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 224.3763 | 164.184 | 1.367 | 0.199 | -136.990 585.743 |
C(dose)[T.1] | -556.1413 | 381.962 | -1.456 | 0.173 | -1396.833 284.550 |
expression | -24.3470 | 25.414 | -0.958 | 0.359 | -80.284 31.590 |
expression:C(dose)[T.1] | 93.8759 | 59.188 | 1.586 | 0.141 | -36.397 224.149 |
Omnibus: | 5.838 | Durbin-Watson: | 0.848 |
Prob(Omnibus): | 0.054 | Jarque-Bera (JB): | 3.164 |
Skew: | -1.080 | Prob(JB): | 0.206 |
Kurtosis: | 3.629 | Cond. No. | 405. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.453 |
Model: | OLS | Adj. R-squared: | 0.361 |
Method: | Least Squares | F-statistic: | 4.961 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0269 |
Time: | 04:27:49 | Log-Likelihood: | -70.781 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 112.8053 | 157.440 | 0.716 | 0.487 | -230.228 455.838 |
C(dose)[T.1] | 49.2154 | 15.685 | 3.138 | 0.009 | 15.040 83.391 |
expression | -7.0392 | 24.359 | -0.289 | 0.778 | -60.112 46.034 |
Omnibus: | 2.632 | Durbin-Watson: | 0.806 |
Prob(Omnibus): | 0.268 | Jarque-Bera (JB): | 1.806 |
Skew: | -0.829 | Prob(JB): | 0.405 |
Kurtosis: | 2.622 | Cond. No. | 133. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:27:49 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.003 |
Model: | OLS | Adj. R-squared: | -0.073 |
Method: | Least Squares | F-statistic: | 0.04528 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.835 |
Time: | 04:27:49 | Log-Likelihood: | -75.274 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 136.9888 | 203.845 | 0.672 | 0.513 | -303.391 577.369 |
expression | -6.7190 | 31.576 | -0.213 | 0.835 | -74.934 61.496 |
Omnibus: | 0.654 | Durbin-Watson: | 1.626 |
Prob(Omnibus): | 0.721 | Jarque-Bera (JB): | 0.612 |
Skew: | 0.119 | Prob(JB): | 0.737 |
Kurtosis: | 2.040 | Cond. No. | 133. |