AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.153 | 0.700 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.597 |
Method: | Least Squares | F-statistic: | 11.85 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000133 |
Time: | 06:19:41 | Log-Likelihood: | -100.97 |
No. Observations: | 23 | AIC: | 209.9 |
Df Residuals: | 19 | BIC: | 214.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 25.5074 | 76.805 | 0.332 | 0.743 | -135.248 186.263 |
C(dose)[T.1] | 61.8415 | 231.871 | 0.267 | 0.793 | -423.469 547.152 |
expression | 3.4555 | 9.217 | 0.375 | 0.712 | -15.836 22.747 |
expression:C(dose)[T.1] | -1.4495 | 23.595 | -0.061 | 0.952 | -50.833 47.934 |
Omnibus: | 0.217 | Durbin-Watson: | 1.910 |
Prob(Omnibus): | 0.897 | Jarque-Bera (JB): | 0.413 |
Skew: | 0.120 | Prob(JB): | 0.814 |
Kurtosis: | 2.390 | Cond. No. | 573. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.617 |
Method: | Least Squares | F-statistic: | 18.71 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.63e-05 |
Time: | 06:19:41 | Log-Likelihood: | -100.98 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 27.3446 | 68.960 | 0.397 | 0.696 | -116.503 171.192 |
C(dose)[T.1] | 47.6369 | 16.994 | 2.803 | 0.011 | 12.188 83.086 |
expression | 3.2343 | 8.271 | 0.391 | 0.700 | -14.018 20.486 |
Omnibus: | 0.228 | Durbin-Watson: | 1.922 |
Prob(Omnibus): | 0.892 | Jarque-Bera (JB): | 0.421 |
Skew: | 0.120 | Prob(JB): | 0.810 |
Kurtosis: | 2.382 | Cond. No. | 151. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 06:19:41 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.515 |
Model: | OLS | Adj. R-squared: | 0.492 |
Method: | Least Squares | F-statistic: | 22.29 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000116 |
Time: | 06:19:41 | Log-Likelihood: | -104.79 |
No. Observations: | 23 | AIC: | 213.6 |
Df Residuals: | 21 | BIC: | 215.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -131.8019 | 45.084 | -2.923 | 0.008 | -225.560 -38.044 |
expression | 23.1197 | 4.897 | 4.721 | 0.000 | 12.936 33.304 |
Omnibus: | 1.275 | Durbin-Watson: | 2.116 |
Prob(Omnibus): | 0.529 | Jarque-Bera (JB): | 1.080 |
Skew: | 0.336 | Prob(JB): | 0.583 |
Kurtosis: | 2.179 | Cond. No. | 83.5 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.248 | 0.160 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.537 |
Model: | OLS | Adj. R-squared: | 0.410 |
Method: | Least Squares | F-statistic: | 4.248 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0319 |
Time: | 06:19:41 | Log-Likelihood: | -69.530 |
No. Observations: | 15 | AIC: | 147.1 |
Df Residuals: | 11 | BIC: | 149.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -61.0971 | 120.020 | -0.509 | 0.621 | -325.260 203.066 |
C(dose)[T.1] | 66.2649 | 166.891 | 0.397 | 0.699 | -301.061 433.590 |
expression | 20.4028 | 18.972 | 1.075 | 0.305 | -21.355 62.161 |
expression:C(dose)[T.1] | -3.8390 | 25.585 | -0.150 | 0.883 | -60.152 52.474 |
Omnibus: | 0.979 | Durbin-Watson: | 1.373 |
Prob(Omnibus): | 0.613 | Jarque-Bera (JB): | 0.339 |
Skew: | -0.368 | Prob(JB): | 0.844 |
Kurtosis: | 2.968 | Cond. No. | 202. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.536 |
Model: | OLS | Adj. R-squared: | 0.458 |
Method: | Least Squares | F-statistic: | 6.924 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0100 |
Time: | 06:19:41 | Log-Likelihood: | -69.545 |
No. Observations: | 15 | AIC: | 145.1 |
Df Residuals: | 12 | BIC: | 147.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -47.7995 | 77.570 | -0.616 | 0.549 | -216.810 121.211 |
C(dose)[T.1] | 41.3395 | 15.366 | 2.690 | 0.020 | 7.861 74.818 |
expression | 18.2919 | 12.199 | 1.499 | 0.160 | -8.288 44.872 |
Omnibus: | 0.937 | Durbin-Watson: | 1.351 |
Prob(Omnibus): | 0.626 | Jarque-Bera (JB): | 0.255 |
Skew: | -0.319 | Prob(JB): | 0.880 |
Kurtosis: | 3.027 | Cond. No. | 72.6 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 06:19:41 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.256 |
Model: | OLS | Adj. R-squared: | 0.198 |
Method: | Least Squares | F-statistic: | 4.467 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0545 |
Time: | 06:19:41 | Log-Likelihood: | -73.085 |
No. Observations: | 15 | AIC: | 150.2 |
Df Residuals: | 13 | BIC: | 151.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -98.8233 | 91.500 | -1.080 | 0.300 | -296.496 98.850 |
expression | 29.4846 | 13.951 | 2.113 | 0.054 | -0.655 59.624 |
Omnibus: | 1.985 | Durbin-Watson: | 1.768 |
Prob(Omnibus): | 0.371 | Jarque-Bera (JB): | 0.983 |
Skew: | 0.627 | Prob(JB): | 0.612 |
Kurtosis: | 2.980 | Cond. No. | 70.0 |