AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.174 0.681 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.652
Model: OLS Adj. R-squared: 0.597
Method: Least Squares F-statistic: 11.87
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000132
Time: 03:36:26 Log-Likelihood: -100.96
No. Observations: 23 AIC: 209.9
Df Residuals: 19 BIC: 214.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 83.5442 82.531 1.012 0.324 -89.196 256.284
C(dose)[T.1] 66.3035 228.448 0.290 0.775 -411.844 544.451
expression -3.2476 9.111 -0.356 0.725 -22.316 15.821
expression:C(dose)[T.1] -0.6157 21.474 -0.029 0.977 -45.560 44.329
Omnibus: 0.643 Durbin-Watson: 1.816
Prob(Omnibus): 0.725 Jarque-Bera (JB): 0.640
Skew: 0.012 Prob(JB): 0.726
Kurtosis: 2.183 Cond. No. 615.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.652
Model: OLS Adj. R-squared: 0.617
Method: Least Squares F-statistic: 18.74
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.60e-05
Time: 03:36:26 Log-Likelihood: -100.96
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 84.5454 72.889 1.160 0.260 -67.499 236.590
C(dose)[T.1] 59.7739 17.714 3.374 0.003 22.823 96.725
expression -3.3584 8.041 -0.418 0.681 -20.132 13.415
Omnibus: 0.637 Durbin-Watson: 1.818
Prob(Omnibus): 0.727 Jarque-Bera (JB): 0.637
Skew: 0.009 Prob(JB): 0.727
Kurtosis: 2.185 Cond. No. 173.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:36:26 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.454
Model: OLS Adj. R-squared: 0.428
Method: Least Squares F-statistic: 17.46
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000424
Time: 03:36:26 Log-Likelihood: -106.15
No. Observations: 23 AIC: 216.3
Df Residuals: 21 BIC: 218.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -121.7717 48.511 -2.510 0.020 -222.655 -20.888
expression 20.2504 4.846 4.179 0.000 10.173 30.328
Omnibus: 1.248 Durbin-Watson: 2.320
Prob(Omnibus): 0.536 Jarque-Bera (JB): 1.007
Skew: 0.276 Prob(JB): 0.605
Kurtosis: 2.137 Cond. No. 92.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.207 0.163 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.551
Model: OLS Adj. R-squared: 0.428
Method: Least Squares F-statistic: 4.492
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0273
Time: 03:36:26 Log-Likelihood: -69.301
No. Observations: 15 AIC: 146.6
Df Residuals: 11 BIC: 149.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 29.8471 72.081 0.414 0.687 -128.803 188.497
C(dose)[T.1] -29.6588 106.870 -0.278 0.787 -264.878 205.561
expression 6.0003 11.378 0.527 0.608 -19.042 31.042
expression:C(dose)[T.1] 9.7912 15.559 0.629 0.542 -24.453 44.036
Omnibus: 0.167 Durbin-Watson: 1.251
Prob(Omnibus): 0.920 Jarque-Bera (JB): 0.190
Skew: -0.183 Prob(JB): 0.910
Kurtosis: 2.587 Cond. No. 138.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.534
Model: OLS Adj. R-squared: 0.457
Method: Least Squares F-statistic: 6.887
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0102
Time: 03:36:26 Log-Likelihood: -69.567
No. Observations: 15 AIC: 145.1
Df Residuals: 12 BIC: 147.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -2.9475 48.531 -0.061 0.953 -108.687 102.792
C(dose)[T.1] 36.7227 16.725 2.196 0.049 0.282 73.164
expression 11.2364 7.563 1.486 0.163 -5.241 27.714
Omnibus: 0.506 Durbin-Watson: 1.101
Prob(Omnibus): 0.777 Jarque-Bera (JB): 0.533
Skew: -0.348 Prob(JB): 0.766
Kurtosis: 2.393 Cond. No. 48.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:36:26 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.347
Model: OLS Adj. R-squared: 0.297
Method: Least Squares F-statistic: 6.920
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0208
Time: 03:36:26 Log-Likelihood: -72.099
No. Observations: 15 AIC: 148.2
Df Residuals: 13 BIC: 149.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -40.5029 51.662 -0.784 0.447 -152.111 71.105
expression 19.5716 7.440 2.631 0.021 3.498 35.645
Omnibus: 0.331 Durbin-Watson: 1.816
Prob(Omnibus): 0.848 Jarque-Bera (JB): 0.299
Skew: 0.273 Prob(JB): 0.861
Kurtosis: 2.577 Cond. No. 44.6