AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.370 0.081 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.731
Model: OLS Adj. R-squared: 0.688
Method: Least Squares F-statistic: 17.20
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.21e-05
Time: 22:45:56 Log-Likelihood: -98.010
No. Observations: 23 AIC: 204.0
Df Residuals: 19 BIC: 208.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 105.7518 86.040 1.229 0.234 -74.333 285.836
C(dose)[T.1] 242.8087 134.768 1.802 0.087 -39.265 524.882
expression -7.4857 12.471 -0.600 0.555 -33.587 18.616
expression:C(dose)[T.1] -30.4700 20.532 -1.484 0.154 -73.444 12.504
Omnibus: 1.906 Durbin-Watson: 2.069
Prob(Omnibus): 0.386 Jarque-Bera (JB): 1.536
Skew: 0.479 Prob(JB): 0.464
Kurtosis: 2.172 Cond. No. 285.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.700
Model: OLS Adj. R-squared: 0.670
Method: Least Squares F-statistic: 23.30
Date: Thu, 03 Apr 2025 Prob (F-statistic): 5.97e-06
Time: 22:45:56 Log-Likelihood: -99.272
No. Observations: 23 AIC: 204.5
Df Residuals: 20 BIC: 207.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 183.1499 70.459 2.599 0.017 36.176 330.124
C(dose)[T.1] 43.3062 9.781 4.427 0.000 22.903 63.709
expression -18.7264 10.200 -1.836 0.081 -40.004 2.551
Omnibus: 2.340 Durbin-Watson: 2.102
Prob(Omnibus): 0.310 Jarque-Bera (JB): 1.555
Skew: 0.409 Prob(JB): 0.460
Kurtosis: 2.023 Cond. No. 119.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:45:56 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.405
Model: OLS Adj. R-squared: 0.377
Method: Least Squares F-statistic: 14.31
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00109
Time: 22:45:57 Log-Likelihood: -107.13
No. Observations: 23 AIC: 218.3
Df Residuals: 21 BIC: 220.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 371.1052 77.223 4.806 0.000 210.510 531.700
expression -43.9541 11.618 -3.783 0.001 -68.116 -19.792
Omnibus: 1.644 Durbin-Watson: 3.042
Prob(Omnibus): 0.440 Jarque-Bera (JB): 0.977
Skew: -0.047 Prob(JB): 0.613
Kurtosis: 1.995 Cond. No. 94.3

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.749 0.050 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.614
Model: OLS Adj. R-squared: 0.508
Method: Least Squares F-statistic: 5.820
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0124
Time: 22:45:57 Log-Likelihood: -68.170
No. Observations: 15 AIC: 144.3
Df Residuals: 11 BIC: 147.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 234.0895 164.327 1.425 0.182 -127.592 595.771
C(dose)[T.1] 176.9858 225.406 0.785 0.449 -319.129 673.101
expression -25.7580 25.350 -1.016 0.331 -81.552 30.036
expression:C(dose)[T.1] -16.4644 33.619 -0.490 0.634 -90.460 57.531
Omnibus: 1.321 Durbin-Watson: 1.714
Prob(Omnibus): 0.517 Jarque-Bera (JB): 1.024
Skew: -0.422 Prob(JB): 0.599
Kurtosis: 2.037 Cond. No. 311.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.605
Model: OLS Adj. R-squared: 0.539
Method: Least Squares F-statistic: 9.193
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00379
Time: 22:45:57 Log-Likelihood: -68.332
No. Observations: 15 AIC: 142.7
Df Residuals: 12 BIC: 144.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 294.6570 104.720 2.814 0.016 66.491 522.823
C(dose)[T.1] 66.8799 15.599 4.287 0.001 32.892 100.868
expression -35.1189 16.115 -2.179 0.050 -70.230 -0.008
Omnibus: 1.432 Durbin-Watson: 1.829
Prob(Omnibus): 0.489 Jarque-Bera (JB): 1.074
Skew: -0.432 Prob(JB): 0.585
Kurtosis: 2.014 Cond. No. 109.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:45:57 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.077
Method: Least Squares F-statistic: 0.001522
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.969
Time: 22:45:57 Log-Likelihood: -75.299
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 88.1353 142.149 0.620 0.546 -218.960 395.230
expression 0.8208 21.040 0.039 0.969 -44.634 46.275
Omnibus: 0.582 Durbin-Watson: 1.595
Prob(Omnibus): 0.748 Jarque-Bera (JB): 0.573
Skew: 0.041 Prob(JB): 0.751
Kurtosis: 2.046 Cond. No. 96.6