AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.459 | 0.047 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.713 |
Model: | OLS | Adj. R-squared: | 0.668 |
Method: | Least Squares | F-statistic: | 15.75 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.18e-05 |
Time: | 04:27:32 | Log-Likelihood: | -98.741 |
No. Observations: | 23 | AIC: | 205.5 |
Df Residuals: | 19 | BIC: | 210.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -206.2849 | 273.714 | -0.754 | 0.460 | -779.174 366.604 |
C(dose)[T.1] | 84.1357 | 301.212 | 0.279 | 0.783 | -546.309 714.580 |
expression | 32.7268 | 34.380 | 0.952 | 0.353 | -39.232 104.686 |
expression:C(dose)[T.1] | -4.0804 | 37.781 | -0.108 | 0.915 | -83.156 74.995 |
Omnibus: | 0.056 | Durbin-Watson: | 1.954 |
Prob(Omnibus): | 0.972 | Jarque-Bera (JB): | 0.134 |
Skew: | 0.088 | Prob(JB): | 0.935 |
Kurtosis: | 2.670 | Cond. No. | 902. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.713 |
Model: | OLS | Adj. R-squared: | 0.684 |
Method: | Least Squares | F-statistic: | 24.85 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.79e-06 |
Time: | 04:27:32 | Log-Likelihood: | -98.748 |
No. Observations: | 23 | AIC: | 203.5 |
Df Residuals: | 20 | BIC: | 206.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -179.3893 | 110.756 | -1.620 | 0.121 | -410.423 51.645 |
C(dose)[T.1] | 51.6159 | 7.972 | 6.475 | 0.000 | 34.987 68.245 |
expression | 29.3478 | 13.898 | 2.112 | 0.047 | 0.358 58.338 |
Omnibus: | 0.070 | Durbin-Watson: | 1.944 |
Prob(Omnibus): | 0.966 | Jarque-Bera (JB): | 0.128 |
Skew: | 0.095 | Prob(JB): | 0.938 |
Kurtosis: | 2.688 | Cond. No. | 227. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:27:32 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.112 |
Model: | OLS | Adj. R-squared: | 0.069 |
Method: | Least Squares | F-statistic: | 2.637 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.119 |
Time: | 04:27:32 | Log-Likelihood: | -111.74 |
No. Observations: | 23 | AIC: | 227.5 |
Df Residuals: | 21 | BIC: | 229.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -228.1931 | 189.745 | -1.203 | 0.243 | -622.790 166.403 |
expression | 38.5482 | 23.739 | 1.624 | 0.119 | -10.821 87.917 |
Omnibus: | 2.943 | Durbin-Watson: | 2.547 |
Prob(Omnibus): | 0.230 | Jarque-Bera (JB): | 1.431 |
Skew: | 0.245 | Prob(JB): | 0.489 |
Kurtosis: | 1.880 | Cond. No. | 226. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.188 | 0.673 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.499 |
Model: | OLS | Adj. R-squared: | 0.363 |
Method: | Least Squares | F-statistic: | 3.656 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0476 |
Time: | 04:27:32 | Log-Likelihood: | -70.112 |
No. Observations: | 15 | AIC: | 148.2 |
Df Residuals: | 11 | BIC: | 151.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -171.3492 | 428.878 | -0.400 | 0.697 | -1115.304 772.605 |
C(dose)[T.1] | 537.7466 | 511.907 | 1.050 | 0.316 | -588.953 1664.447 |
expression | 31.3590 | 56.305 | 0.557 | 0.589 | -92.568 155.285 |
expression:C(dose)[T.1] | -65.1991 | 67.838 | -0.961 | 0.357 | -214.509 84.111 |
Omnibus: | 1.174 | Durbin-Watson: | 1.318 |
Prob(Omnibus): | 0.556 | Jarque-Bera (JB): | 0.659 |
Skew: | -0.500 | Prob(JB): | 0.719 |
Kurtosis: | 2.771 | Cond. No. | 722. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.457 |
Model: | OLS | Adj. R-squared: | 0.367 |
Method: | Least Squares | F-statistic: | 5.055 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0256 |
Time: | 04:27:32 | Log-Likelihood: | -70.717 |
No. Observations: | 15 | AIC: | 147.4 |
Df Residuals: | 12 | BIC: | 149.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 170.6490 | 238.643 | 0.715 | 0.488 | -349.309 690.607 |
C(dose)[T.1] | 46.0325 | 17.243 | 2.670 | 0.020 | 8.464 83.601 |
expression | -13.5561 | 31.305 | -0.433 | 0.673 | -81.765 54.653 |
Omnibus: | 1.956 | Durbin-Watson: | 0.819 |
Prob(Omnibus): | 0.376 | Jarque-Bera (JB): | 1.345 |
Skew: | -0.706 | Prob(JB): | 0.510 |
Kurtosis: | 2.600 | Cond. No. | 234. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:27:32 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.135 |
Model: | OLS | Adj. R-squared: | 0.068 |
Method: | Least Squares | F-statistic: | 2.027 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.178 |
Time: | 04:27:32 | Log-Likelihood: | -74.213 |
No. Observations: | 15 | AIC: | 152.4 |
Df Residuals: | 13 | BIC: | 153.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 460.4546 | 257.787 | 1.786 | 0.097 | -96.460 1017.369 |
expression | -48.9713 | 34.395 | -1.424 | 0.178 | -123.277 25.335 |
Omnibus: | 0.200 | Durbin-Watson: | 1.607 |
Prob(Omnibus): | 0.905 | Jarque-Bera (JB): | 0.044 |
Skew: | 0.069 | Prob(JB): | 0.978 |
Kurtosis: | 2.774 | Cond. No. | 208. |