AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
5.221 0.033 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.726
Model: OLS Adj. R-squared: 0.683
Method: Least Squares F-statistic: 16.82
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.41e-05
Time: 04:34:47 Log-Likelihood: -98.199
No. Observations: 23 AIC: 204.4
Df Residuals: 19 BIC: 208.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 120.1058 48.406 2.481 0.023 18.791 221.421
C(dose)[T.1] 87.8302 72.523 1.211 0.241 -63.963 239.624
expression -11.0505 8.065 -1.370 0.187 -27.930 5.829
expression:C(dose)[T.1] -7.2577 12.686 -0.572 0.574 -33.811 19.295
Omnibus: 1.947 Durbin-Watson: 2.046
Prob(Omnibus): 0.378 Jarque-Bera (JB): 1.102
Skew: 0.146 Prob(JB): 0.576
Kurtosis: 1.968 Cond. No. 135.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.722
Model: OLS Adj. R-squared: 0.694
Method: Least Squares F-statistic: 25.93
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.79e-06
Time: 04:34:47 Log-Likelihood: -98.395
No. Observations: 23 AIC: 202.8
Df Residuals: 20 BIC: 206.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 137.5962 36.892 3.730 0.001 60.640 214.552
C(dose)[T.1] 46.6258 8.344 5.588 0.000 29.221 64.030
expression -13.9835 6.120 -2.285 0.033 -26.749 -1.218
Omnibus: 3.702 Durbin-Watson: 2.145
Prob(Omnibus): 0.157 Jarque-Bera (JB): 1.407
Skew: -0.006 Prob(JB): 0.495
Kurtosis: 1.788 Cond. No. 56.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:34:47 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.287
Model: OLS Adj. R-squared: 0.253
Method: Least Squares F-statistic: 8.460
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00840
Time: 04:34:47 Log-Likelihood: -109.21
No. Observations: 23 AIC: 222.4
Df Residuals: 21 BIC: 224.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 228.9251 51.658 4.432 0.000 121.496 336.355
expression -26.0226 8.947 -2.909 0.008 -44.628 -7.417
Omnibus: 0.147 Durbin-Watson: 2.637
Prob(Omnibus): 0.929 Jarque-Bera (JB): 0.181
Skew: 0.151 Prob(JB): 0.913
Kurtosis: 2.687 Cond. No. 50.4

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.262 0.158 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.575
Model: OLS Adj. R-squared: 0.458
Method: Least Squares F-statistic: 4.951
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0205
Time: 04:34:47 Log-Likelihood: -68.891
No. Observations: 15 AIC: 145.8
Df Residuals: 11 BIC: 148.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 117.2576 68.711 1.707 0.116 -33.975 268.490
C(dose)[T.1] 176.2777 127.900 1.378 0.196 -105.228 457.783
expression -9.8181 13.378 -0.734 0.478 -39.263 19.627
expression:C(dose)[T.1] -24.7870 24.910 -0.995 0.341 -79.614 30.040
Omnibus: 2.002 Durbin-Watson: 1.073
Prob(Omnibus): 0.368 Jarque-Bera (JB): 1.370
Skew: -0.526 Prob(JB): 0.504
Kurtosis: 1.958 Cond. No. 115.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.536
Model: OLS Adj. R-squared: 0.459
Method: Least Squares F-statistic: 6.937
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00995
Time: 04:34:47 Log-Likelihood: -69.538
No. Observations: 15 AIC: 145.1
Df Residuals: 12 BIC: 147.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 153.5416 58.214 2.638 0.022 26.705 280.378
C(dose)[T.1] 49.8248 14.443 3.450 0.005 18.355 81.294
expression -16.9673 11.280 -1.504 0.158 -41.545 7.611
Omnibus: 3.213 Durbin-Watson: 1.408
Prob(Omnibus): 0.201 Jarque-Bera (JB): 1.556
Skew: -0.468 Prob(JB): 0.459
Kurtosis: 1.730 Cond. No. 43.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:34:47 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.076
Model: OLS Adj. R-squared: 0.005
Method: Least Squares F-statistic: 1.074
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.319
Time: 04:34:47 Log-Likelihood: -74.705
No. Observations: 15 AIC: 153.4
Df Residuals: 13 BIC: 154.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 174.3806 78.506 2.221 0.045 4.780 343.982
expression -15.8419 15.289 -1.036 0.319 -48.871 17.187
Omnibus: 0.738 Durbin-Watson: 1.710
Prob(Omnibus): 0.691 Jarque-Bera (JB): 0.647
Skew: 0.138 Prob(JB): 0.724
Kurtosis: 2.021 Cond. No. 42.8