AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.222 | 0.643 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.653 |
Model: | OLS | Adj. R-squared: | 0.598 |
Method: | Least Squares | F-statistic: | 11.92 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.000128 |
Time: | 23:00:00 | Log-Likelihood: | -100.93 |
No. Observations: | 23 | AIC: | 209.9 |
Df Residuals: | 19 | BIC: | 214.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 124.0748 | 195.069 | 0.636 | 0.532 | -284.209 532.359 |
C(dose)[T.1] | 94.3508 | 417.793 | 0.226 | 0.824 | -780.101 968.802 |
expression | -7.4705 | 20.847 | -0.358 | 0.724 | -51.105 36.164 |
expression:C(dose)[T.1] | -3.6594 | 42.539 | -0.086 | 0.932 | -92.694 85.375 |
Omnibus: | 0.920 | Durbin-Watson: | 1.833 |
Prob(Omnibus): | 0.631 | Jarque-Bera (JB): | 0.748 |
Skew: | 0.007 | Prob(JB): | 0.688 |
Kurtosis: | 2.116 | Cond. No. | 1.08e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.653 |
Model: | OLS | Adj. R-squared: | 0.618 |
Method: | Least Squares | F-statistic: | 18.81 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.54e-05 |
Time: | 23:00:00 | Log-Likelihood: | -100.94 |
No. Observations: | 23 | AIC: | 207.9 |
Df Residuals: | 20 | BIC: | 211.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 132.2947 | 165.790 | 0.798 | 0.434 | -213.537 478.127 |
C(dose)[T.1] | 58.4307 | 13.888 | 4.207 | 0.000 | 29.462 87.400 |
expression | -8.3495 | 17.716 | -0.471 | 0.643 | -45.303 28.604 |
Omnibus: | 0.875 | Durbin-Watson: | 1.852 |
Prob(Omnibus): | 0.646 | Jarque-Bera (JB): | 0.732 |
Skew: | -0.011 | Prob(JB): | 0.693 |
Kurtosis: | 2.126 | Cond. No. | 373. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 23:00:00 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.346 |
Model: | OLS | Adj. R-squared: | 0.315 |
Method: | Least Squares | F-statistic: | 11.10 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00317 |
Time: | 23:00:00 | Log-Likelihood: | -108.23 |
No. Observations: | 23 | AIC: | 220.5 |
Df Residuals: | 21 | BIC: | 222.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -399.1585 | 143.884 | -2.774 | 0.011 | -698.382 -99.936 |
expression | 49.6552 | 14.907 | 3.331 | 0.003 | 18.654 80.656 |
Omnibus: | 0.602 | Durbin-Watson: | 2.258 |
Prob(Omnibus): | 0.740 | Jarque-Bera (JB): | 0.682 |
Skew: | 0.244 | Prob(JB): | 0.711 |
Kurtosis: | 2.311 | Cond. No. | 240. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.479 | 0.141 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.595 |
Model: | OLS | Adj. R-squared: | 0.484 |
Method: | Least Squares | F-statistic: | 5.379 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0159 |
Time: | 23:00:01 | Log-Likelihood: | -68.527 |
No. Observations: | 15 | AIC: | 145.1 |
Df Residuals: | 11 | BIC: | 147.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 18.2587 | 516.683 | 0.035 | 0.972 | -1118.954 1155.471 |
C(dose)[T.1] | -738.1314 | 666.489 | -1.107 | 0.292 | -2205.065 728.802 |
expression | 5.0343 | 52.890 | 0.095 | 0.926 | -111.376 121.445 |
expression:C(dose)[T.1] | 80.6758 | 68.244 | 1.182 | 0.262 | -69.528 230.880 |
Omnibus: | 2.552 | Durbin-Watson: | 0.916 |
Prob(Omnibus): | 0.279 | Jarque-Bera (JB): | 1.672 |
Skew: | -0.804 | Prob(JB): | 0.434 |
Kurtosis: | 2.702 | Cond. No. | 1.30e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.543 |
Model: | OLS | Adj. R-squared: | 0.467 |
Method: | Least Squares | F-statistic: | 7.134 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00909 |
Time: | 23:00:01 | Log-Likelihood: | -69.424 |
No. Observations: | 15 | AIC: | 144.8 |
Df Residuals: | 12 | BIC: | 147.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -455.0309 | 331.977 | -1.371 | 0.196 | -1178.347 268.285 |
C(dose)[T.1] | 49.5928 | 14.331 | 3.461 | 0.005 | 18.368 80.818 |
expression | 53.4921 | 33.973 | 1.575 | 0.141 | -20.528 127.512 |
Omnibus: | 2.561 | Durbin-Watson: | 1.196 |
Prob(Omnibus): | 0.278 | Jarque-Bera (JB): | 1.920 |
Skew: | -0.758 | Prob(JB): | 0.383 |
Kurtosis: | 2.120 | Cond. No. | 459. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 23:00:01 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.087 |
Model: | OLS | Adj. R-squared: | 0.017 |
Method: | Least Squares | F-statistic: | 1.243 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.285 |
Time: | 23:00:01 | Log-Likelihood: | -74.615 |
No. Observations: | 15 | AIC: | 153.2 |
Df Residuals: | 13 | BIC: | 154.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -408.4180 | 450.462 | -0.907 | 0.381 | -1381.583 564.747 |
expression | 51.4269 | 46.129 | 1.115 | 0.285 | -48.228 151.082 |
Omnibus: | 0.140 | Durbin-Watson: | 1.683 |
Prob(Omnibus): | 0.933 | Jarque-Bera (JB): | 0.330 |
Skew: | -0.155 | Prob(JB): | 0.848 |
Kurtosis: | 2.343 | Cond. No. | 458. |